Updating search results...

Problem & Project Based Learning

109 affiliated resources

Search Resources

View
Selected filters:
Common Core Problem Based Curriculum Maps – emergent math
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The following Problem Based Learning (PrBL) curriculum maps are based on the Math Common Core State Standards and the associated scope and sequences. The problems and tasks have been scoured from thoughtful math bloggers who have advanced math educator practice by posting their materials online.

Subject:
Mathematics
Material Type:
Full Course
Syllabus
Date Added:
04/08/2023
Comparing Investments
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to interpret exponential and linear functions and in particular to identify and help students who have the following difficulties: translating between descriptive, algebraic and tabular data, and graphical representation of the functions; recognizing how, and why, a quantity changes per unit intervale; and to achieve these goals students work on simple and compound interest problems.

Subject:
Algebra
Mathematics
Measurement and Data
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
03/30/2023
Compasses and Codes: Lesson 1 Exposure Activity, Unit 3 Natural Resources, DIGS AmeriCorps Curriculum CSU
Read the Fine Print
Educational Use
Rating
0.0 stars

Compasses and Codes. This is the Lesson 1 Exposure Activity, from Unit 3 Natural Resources, from the DIGS (Developing Individuals, Growing Stewards) AmeriCorps Curriculum from CSU. The curriculum focuses on introducing students in grades 3-5 to Colorado agriculture, industry and environmental issues. The curriculum upon request. Visit: https://engagement.colostate.edu/programs-old/developing-individuals-growing-stewards/

Subject:
Agriculture
Agriculture and Natural Resources
Applied Science
Architecture and Design
Career and Technical Education
Communication
Computer Science
Computer, Networking and Telecommunications Systems
Cultural Geography
Earth and Space Science
Electronic Technology
Engineering
English Language Arts
Environmental Science
Environmental Studies
Hospitality, Tourism and Social Service Careers
Information Science
Mathematics
Measurement and Data
Networking and Telecommunications
Outdoor Education and Recreation
Physical Geography
Reading Informational Text
STEAM
Social Science
Material Type:
Activity/Lab
Lesson
Lesson Plan
Simulation
Provider:
CSU Extension Office
Provider Set:
AmeriCorps
Date Added:
02/24/2023
Concord Consortium: Solar Oven
Read the Fine Print
Educational Use
Rating
0.0 stars

Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Date Added:
04/02/2013
Core Description, Stratigraphic Correlation, and Mapping: A capstone project for an undergraduate course in Sedimentary Geology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This project is intended as a long-term (3 weeks -- 1 month) lab exercise near the end of a combined Stratigraphy/Sedimentology course. The project utilizes real world data provided by CONSOL Energy of Pittsburgh, PA, and the West Virginia Geological and Economic Survey. This project has been assigned once and is being revised. Instructions have been left somewhat vague in an attempt to force students into discovering some of the more mechanical details of this process themselves.

By the latter third of the course, students have described sedimentary rocks in detail and have constructed vertical sections of rock at several outcrops around campus. The course is moving from Sedimentology/Petrology into Stratigraphy. This project is designed to illustrate the basic principles of lithostratigraphy, which are covered concurrently in the lecture portion of the class.

The project 'unfurls' over several weeks. If students are provided with the entire project at one time they generally get overwhelmed, so the project is presented piecemeal, allowing the students to expand the project as they complete one section.

Step 1: Core description 40 feet of core from the Conemaugh Group of southwestern Pennsylvania is made available to the students. They must describe the core, define lithologic units, identify specific sedimentary structures, and construct a stratigraphic column. (Students struggle with detail versus efficiency of completion, given one full lab period (3 hours) and a week to complete the assignment, many students will get lost in the detail)

The goal is to build familiarity with the type of data available to geologists as they go about constructing maps for resource estimates. Additionally, the lithologies present in this core will be similar to those described in the geologist and drilling logs necessary to complete the next step.

Each step is evaluated independently in this step concern is primarily with identification of basic lithologies (coal, sandstone, shale, limestone).

Step 2: construction of strip logs for 25 core holes in northern West Virginia. Students are provided with a location map, logs for 25 holes, and elevation data. They must construct strip logs suitable for correlation, deciding upon scale and detail of presentation. Students are provided with a CD including the location map and a .pdf for each drill record.

The logs vary between the simplicity of driller data (60' of "blue" shale) and the detail of geologist descriptions, students must balance the detail and simplicity. Additionally, students were faced with "long" logs (i.e. greater than 500') and "short" logs (i.e. less than 100'). This turned out to be extremely difficult, some students got very lost, producing long detailed logs that left them without much time for the last two steps.

Students are again provided with a week to construct the strip logs, including the lab time for the week. Strip logs are evaluated for detail, accuracy, and utility (in many cases too much detail can be as confusing as too little).

Step 3: construction of stratigraphic cross sections. The first time this project was assigned, there was little guidance provided to students beyond "choosing logs that covered the largest stratigraphic interval." This exceeded the grasp of most students so additional guidance will be provided in the next iteration of this project. A generalized stratigraphic column illustrating the basic characteristics of the Monongahela and Conemaugh groups will be provided to assist students with recognition of the basic formations.

Students will be required to construct a stratigraphic cross section through selected wells on the west side of the project area. This cross section will demonstrate the use of marker beds and the lateral continuity of stratigraphic units.

The second cross section will run east-west onto the western flank of the Chestnut Ridge anticline. The datum for this cross section will be surface elevation. This cross section will illustrate the problems of stratigraphic correlation when combined with geological structures. The rock becomes consistently older as one proceeds towards the axis of the anticline. The prominent red beds and the absence of coals, in the eastern portion of the map area indicate the presence of the Chestnut Ridge Anticline.

Evaluation of the cross sections will be based upon the accuracy of the correlations. Students are allowed a week to produce cross sections (including lab). The stratigraphic cross section should accurately delineate the Redstone, Pittsburgh, and Sewickley coals. These occur in sequence and are fairly easy to identify. Successful completion of the east-west cross section will require identification of the approximate stratigraphic position of the Monongahela-Conemaugh contact.

Step 4: construction of isopach maps. Students are then required to identify specific coal and sandstone units within their cross sections, correlate those across the map region and construct isopach maps of those units.

This requires that the students now extend what they have learned from the previous three weeks, extend those correlations to the core holes not included in the basic stratigraphic analysis. The thickness of the coal and sandstone should be identified and isopach maps constructed.

The first iteration of this project produced problems similar to those encountered in step 3. Better guidance and evaluation of the cross sections and allowing students less input on the choice of stratigraphic units to isopach should reduce the confusion.

Step 5: (optional) Interpretation and report writing : the first iteration of this project was running concurrently with a term paper. Instead of two separate projects, an interpretive report will be required. This is still in the planning stage and has not been assigned to students.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/28/2019
Design Step 5: Construct a Prototype
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Design and Fly a Kite
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to use wind energy to combat gravity and create lift by creating their own tetrahedral kites capable of flying. They explore different tetrahedron kite designs, learning that the geometry of the tetrahedron shape lends itself well to kites and wings because of its advantageous strength-to-weight ratio. Then they design their own kites using drinking straws, string, lightweight paper/plastic and glue/tape. Student teams experience the full engineering design cycle as if they are aeronautical engineers—they determine the project constraints, research the problem, brainstorm ideas, select a promising design and build a prototype; then they test and redesign to achieve a successful flying kite. Pre/post quizzes and a worksheet are provided.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
04/12/2023
Designing a Spectroscopy Mission
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, student teams design and build their own spectrographs, researching and designing a ground- or space-based mission using their creation. At project end, teams present their findings to the class, as if they were making an engineering conference presentation. Student must have completed the associated Building a Fancy Spectrograph activity before attempting this activity.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Designing a sedimentary geology course around field-based class projects that yield publishable research
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Related Links

Supplement for this course


Field-based research projects are the focal point for my course in sedimentary geology. For each offering of the course, projects are selected which will enable students to engage in authentic research and learn fundamental principles of sedimentary geology at the same time. Projects have addressed problems as diverse as sedimentologic processes, paleoenvironmental interpretation, stratigraphic correlation between outcrops and the nature of contacts between units. Each semester, the specific content of the course, how the content is organized, which readings are chosen and selection of laboratory experiences are dictated by the nature of the specific project and are planned to support students in their work on the project. Less content may be "covered" with this approach and topics may not follow a "traditional" order (see syllabus), but students' depth of understanding, skills in scientific reasoning, sense of accomplishment, and growth in confidence are greatly enhanced. Class projects from half of the past four offerings of the course culminated in the presentation of three posters at regional GSA conferences. Results of the other two semesters were not submitted for presentation because the instructor failed to identify problems of adequate significance for the class to investigate. However, these projects did yield data which may be useful in future projects.

Field projects must be chosen carefully so that they a) have the potential to yield results of scientific significance, and b) can be completed within the time-frame of one semester. In addition, it is essential to provide students with experiences that enable them to develop the expertise necessary to gather and make sense of the data. To ensure these conditions, the faculty member should be involved actively as a collaborator in the project. Therefore it is mutually beneficial if the class project is related to the faculty member's research or to a topic of interest to him/her. Guidelines for the development of successful projects are available in the Instructor's Notes file.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Geology
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/27/2020
The Dirty Water Project
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate different methods (aeration and filtering) for removing pollutants from water. They will design and build their own water filters.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Discovering Public Lands as Living Museums Map Analysis, Clues from the Landscape: Lesson 2, Museums of the West: Social Studies Lessons
Read the Fine Print
Educational Use
Rating
0.0 stars

Clues from the Landscape Social Studies Lesson 2 Discovering Public Lands as Living Museums is designed to be used with Clues from the Landscape Artifact Kit. Lessons 1, 2 and 4 can be completed without the artifacts from the kit. These kits are available through Musuems of Western Colorado to D51 Teachers. This lesson can be adapted to use without the kit. Students will be able to: • Conduct analysis of different types of maps • Discuss the difficulties faced by homesteaders moving across the state • Describe how homesteaders modified the land around them • Explain why it is important to preserve historic sites • Find information from primary sources including documents, and newspaper articles about life as a homesteader

Subject:
Agriculture
Agriculture and Natural Resources
Anthropology
Cultural Geography
Earth and Space Science
History
Physical Geography
Social Science
Sociology
U.S. History
Women's Studies
Material Type:
Lesson
Lesson Plan
Provider:
Museums of Western Colorado
Provider Set:
Museum of the West
Date Added:
02/06/2023
Drought: Identifying Impacts and Evaluating Solutions Lesson Plan
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this set of lessons, students learn about the impacts of water shortages due to drought, make connections to climate patterns, and explore community resiliency solutions. The lessons engage students in evaluating solutions for a particular case study community. Students will need to do additional research on solutions, but by the end of the lesson, students will be able to articulate how drought, although a localized problem, has far-reaching impacts, and to suggest solutions to a problem that is projected to intensify as the climate continues to change.

Subject:
Agriculture and Natural Resources
Applied Science
Atmospheric Science
Earth and Space Science
Environmental Science
Environmental Studies
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
PBS Learning Media
Date Added:
06/25/2019
Engineers Love Pizza, Too!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this service-learning engineering project, students follow the steps of the engineering design process to design an assistive eating device for a client. More specifically, they design a prototype device to help a young girl who has a medical condition that restricts the motion of her joints. Her wish is to eat her favorite food, pizza, without getting her nose wet. Students learn about arthrogryposis and how it affects the human body as they act as engineers to find a solution to this open-ended design challenge and build a working prototype. This project works even better if you arrange for a client in your own community.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Eratosthenes and the Circumference of the Earth
Unrestricted Use
CC BY
Rating
0.0 stars

The accuracy and simplicity of this experiment are amazing. A wonderful project for students, which would necessarily involve team work with a different school and most likely a school in a different state or region of the country, would be to try to repeat Eratosthenes' experiment.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
12/15/2012
Estimating: Counting Trees
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help you assess how well students are able to: solve simple problems involving ratio and direct proportion; choose an appropriate sampling method; and collect discrete data and record them using a frequency table.

Subject:
Education
Geometry
Mathematics
Measurement and Data
Ratios and Proportions
Material Type:
Assessment
Lecture Notes
Lesson Plan
Teaching/Learning Strategy
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
03/30/2023
Evaluating Statements About Length and Area
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students can: Understand the concepts of length and area; use the concept of area in proving why two areas are or are not equal; and construct their own examples and counterexamples to help justify or refute conjectures.

Subject:
Geometry
Mathematics
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/08/2023
Evaluating Statements About Probability
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit addresses common misconceptions relating to probability of simple and compound events. The lesson will help you assess how well students understand concepts of: Equally likely events; randomness; and sample sizes.

Subject:
Mathematics
Statistics and Probability
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/08/2023
FARMINFIN Training Platform
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The learning resources presented here have been developed through an ERASMUS+ project for adult education entitled “FARMINFIN: Farming concepts and innovative funding/financing” (Project Nº: 2019-1-BE01-KA202-050397) carried out between 2019 and 2021.

The FARMINFIN project provides farmers with the needed competences for the implementation of innovative financing means tailored adequately for their own farms, entrepreneurial approach and personal circumstances.

FARMINFIN training material is aimed at young farmers taking over the business of their parents or simply aiming at business development. For them it is very important to have a solid financial basis for their agricultural businesses!

FARMINFIN has developed a web-based app where you can access to all the project’s training materials which are available in 7 languages: English, French, German, Spanish, Italian, Czech and Swedish. Through our learning platform you will be able to:

1. Get an overview of the actual situation of innovative financing in family farms in Europe and the available financing tools.
2. Gain knowledge and experience from selected best practices across Europe.
3. Foster professional handling of innovative financing means by farmers.
4. Strengthen economic and socio-economic viability of family farms, and therefore deliver added value to rural development.

The training resources you will find are the following:

SUMMARY REPORT: here you will find an overview of the situation of alternative ways of financing in the farming sector in Europe. The report provides a picture of the common findings across participating project countries, which have been analysed in more detail. You will find also in this section a downloadable annex that graphically shows all the data collected during the development of the report and can be viewed in detail segmented by country.

CATALOGUE: In the catalogue you will find not only a list of the main subsidies’ lines and general financing products, but also the financing products adapted to agriculture and more importantly, a large catalogue of the main products of alternative or innovative financing illustrated with a diagram showing the actors involved and the relationships between them. More specifically, the catalogue has identified:
- 14 of the main lines of subsidies.
- Main general funding products categorised into:
o Public sector (both European and national);
o Short-term private sector (11 tools identified);
o Long-term private sector (8 tools identified).
- Main financing products adapted to agriculture, for the agricultural, livestock and forestry sector.
- Main innovative financing products, where a total of 21 innovative financing tools have been catalogued in detail, including diagrams to illustrate how they work.

BEST PRACTICES: in this section you will find a series of 17 examples of farms across Europe that represent a wide range of best practices in the implementation of innovative financing schemes in the farming sector. Through this section you will learn from real experiences, reading about farmer’s problems related to financing and how they solved them. Learning from existing experiences will surely inspire you.

TRAINING MODULES: learning materials plenty of tips and suggestions on how to deal with relevant topics around the financing of your farm. In addition to the prepared contents of the modules, there is an opportunity to self-test your initial knowledge before taking the module and there is also a test at the end of the module to see whether you understood the contents. The modules also include useful templates, canvas and tools to be used in your learning pathway as well as in your professional activity.

For all components of the learning platform, information is provided in a comprehensive and user-friendly design and the materials can also be downloaded in PDF format.

Subject:
Agriculture
Agriculture and Natural Resources
Business and Communication
Finance
Management
Marketing
Material Type:
Case Study
Full Course
Reading
Date Added:
05/03/2023
Forecasting Lake Effect Snow in Lake Superior region
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This exercise is designed to present the realistic problems of forecasting weather. Lake effect snows are hard to forecast because they depend on information that isn't part of the regular set of information and involve some pretty specific things that integrate the location of the site with surrounding environment. Even places close by can get totally different forecasts. When you have a regional forecast, it doesn't really address lake effect snows, unless the forecaster really focuses. So the exercise aims to show the value of broad critical thinking in meteorology, and it is very dramatic, because the difference between 36 inches and whiteout and clear blue sky is undeniable. The exercise comes when students are 8 weeks into the class. The class is an AMS based class, which has already been described well in this workshop by Julie Snow from Slippery Rock. Our class is given in the fall semester and lake effect snow starts in October and is quite an issue in forecasts until April. The skills of a forecaster are tested, and you cannot use forecasts from nearby areas reliably. Finally, we live in a fantastic snow belt, so lake effect snow happens a lot. In a good year we get over 300 inches of snow, mostly at times that places nearby do not. You can drive to Houghton in the bright sun and be met by a wall of very active blizzard just a few miles out of town.

There are some excellent tutorials available from COMET, and outreach of the National Weather Service. I use one done by Greg Byrd, which is available online or in a power point format. There are a number of things that must be learned before forecasting. These include some fluid dynamics of plumes, latent heat, remote sensing, upper air mapping, and the use of models. We cannot cover all them completely. I try to introduce all these things and give people entry points into the juicy parts of these topics, but do not expect students to understand completely. One thing you can spend a long time on are the satellite images. Here is one, just to whet your interest: http://serc.carleton.edu/details/images/13586.html




I have the students make a list of the critical parameters they think might be needed for a successful lake effect forecast. This is a challenge to prepare, but the idea is to include things that are even marginally useful and to collect data to see what is most important. We get a list of parameters like this:


850 mb wind direction
850 mb temperature
Lake Superior surface temperature
fetch length
opposing bay?
Inversion layer height
topographic lift factor
wind shear evidence
upstream lake
upstream moisture factor
snow/ice cover issues


This list is pretty good, but deliberately not complete, and we encourage students to add other things they think might be important. The next step is to find where you can get this information. I have web data sources for most (see below), and some of them are interrelated. You can do this exercise for any site around Lake Superior or probably many other lakes as well. For specific sites, the fetch length, upstream lake and opposing bay information are obtainable directly from the wind direction if you have a good map (Google Earth). So a spreadsheet for parameters related to wind direction can be prepared in advance and these parameters can be immediately available from the wind direction. Nonetheless the issue of sources for all this stuff must be addressed in an effort that spans several hours. The use of models is needed to look into the future where possible.

Once students know what they are looking for and how to find it, the exercise starts its data collection. Every day or every 6 or 12 hours beginning when conditions get close to "LES favorable" students collect information on these LES predictors. They also make LES forecasts for each period and include that information in the spreadsheet. The next day the real snowfall data is added to the spreadsheet, and this can be used as validation data for the forecast. This data collection needs to be done for several weeks (November and December in my case, usually a good time for LES).

The data analysis is the most challenging part. Spreadsheet plots which test the sensitivity of various parameters singly and together are possible. There is a lot of sophistication possible if there is enough LES to analyze. Overall, results should be a good experience with imperfect data addressed to a real-time problem. Models and real data, remote sensing, and balloons are all integrated and there are quite obvious weaknesses.

On the final day of class student groups will compete by doing forecasting which employs the LES techniques. This might reflect the most recent snow event. A more important element of this submission will be their evaluation of LES prediction parameters. Not only do we consider the actual forecast, but we discuss which parameters were successful? Which are inconclusive? What suggestions for improved forecasts are possible from the experience? The format of this will be short presentations with time for discussion.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Atmospheric Science
Biology
Earth and Space Science
Environmental Science
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/24/2019
Fossil of the Family Hominidae Presentation
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity was an educator created resource to accompany the Hominid skull set from CSU's Natural Sciences Education & Outreach Center. The resource can be used with the Hominid Skull Set, The Skull Anatomy Glossary, and the Hominid Evolution Activity from CSU's Natural Sciences Education & Outreach Center. See this link for all associated resources: https://www.cns-eoc.colostate.edu/stem-kits/hominid-skull-set/.

Subject:
Anatomy/Physiology
Ancient History
Anthropology
Archaeology
Biology
Chemistry
Cultural Geography
Earth and Space Science
Ecology
Genetics
Geology
Geoscience
History
Life Science
Paleontology
Physical Geography
Physical Science
Physics
Social Science
Material Type:
Activity/Lab
Lesson
Lesson Plan
Provider:
Colorado State University
Provider Set:
CSU Natural Sciences Education & Outreach Center
Date Added:
02/06/2023