SSAC Physical Volcanology module. Students build spreadsheets to estimate melt density at …
SSAC Physical Volcanology module. Students build spreadsheets to estimate melt density at high temperatures and pressures from the thermodynamic properties of silicates.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
SSAC Physical Volcanology module. Students build spreadsheets to estimate melt density at …
SSAC Physical Volcanology module. Students build spreadsheets to estimate melt density at high temperatures and pressures from the thermodynamic properties of silicates.
The purpose of this unit is to make EM waves of different …
The purpose of this unit is to make EM waves of different wavelengths apparent in students’ everyday lives. This will be accomplished by using devices that students are already familiar with and most likely take for granted –microwave and conventional ovens. Students come into the classroom with the understanding that the microwave oven makes their food hot but without knowing why or how this happens at a molecular level. This unit will give the students real-world context for applications of microwaves and infrared waves.
Understanding wave properties and EM waves is relevant to students because EM waves are used for many purposes and surround us every day. These EM waves are used for technology. There are valid health and safety concerns with exposure to some higher frequency waves, such as ultraviolet radiation, x-rays, and gamma rays. This unit will explore why the microwaves in the microwave oven and infrared radiation from the conventional oven do not have the same safety concerns as the higher energy EM waves.
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply …
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply …
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Being able to control the movement of electrons is fundamental for making …
Being able to control the movement of electrons is fundamental for making all electronic devices work. Discover how electric and magnetic fields can be used to move electrons around. Begin by exploring the relationship between electric forces and charges with vectors. Then, learn about electron fields. Finally, test your knowledge in a fun "Electron Shooting" game!
While learning about volcanoes, magma and lava flows, students learn about the …
While learning about volcanoes, magma and lava flows, students learn about the properties of liquid movement, coming to understand viscosity and other factors that increase and decrease liquid flow. They also learn about lava composition and its risk to human settlements.
Students practice their multiplication skills using robots with wheels built from LEGO® …
Students practice their multiplication skills using robots with wheels built from LEGO® MINDSTORMS® NXT kits. They brainstorm distance travelled by the robots without physically measuring distance and then apply their math skills to correctly calculate the distance and compare their guesses with physical measurements. Through this activity, students estimate parameters other than by physically measuring them, practice multiplication, develop measuring skills, and use their creativity to come up with successful solutions.
Students determine the coefficient of restitution (or the elasticity) for super balls. …
Students determine the coefficient of restitution (or the elasticity) for super balls. Working in pairs, they drop balls from a meter height and determine how high they bounce. They measure, record and repeat the process to gather data to calculate average bounce heights and coefficients of elasticity. Then they extrapolate to determine the height the ball would bounce if dropped from much higher heights.
The aim of this lesson is to introduce the concepts of heat …
The aim of this lesson is to introduce the concepts of heat and temperature, which many students find confusing. During the lesson, students will be asked to explore and discuss situations where even though the same amount of heat is absorbed by several substances, the increase in temperature of the substances is different. This video lesson presents a series of stories relating to heat and temperature, beginning with a visit to a factory where gamat oil is produced. In the video, a man dips his finger into boiling gamat oil yet feels no pain. The scene will draw students’ attention and raise their curiosity about how this is possible. Students will also carry out several experiments to compare and relate the situations where the same amount of heat absorbed by substances will result in different temperatures. By the end of this lesson, students will understand the term “specific heat capacity” and will recognize the difference between a high or low specific heat capacity. They will also understand the term “thermal diffusivity” and how this relates to the topic of the lesson. This lesson offers some authentic learning experiences where students will have the opportunity to relate the concept of heat and temperature to everyday situations. It will take about 50 minutes to complete - however, you may want to divide the lesson into two classes if the activities require more time.
Students learn about the nature of thermal energy, temperature and how materials …
Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and the heat capacity of different materials. Students also learn how some engineering requires an understanding of thermal energy.
This illustrated essay from A Science Odyssey Web site explains the science …
This illustrated essay from A Science Odyssey Web site explains the science behind radio waves, including the role of electrons and electromagnetic fields.
In this lesson and its associated activity, students conduct a simple test …
In this lesson and its associated activity, students conduct a simple test to determine how many drops of each of three liquids can be placed on a penny before spilling over. The three liquids are water, rubbing alcohol, and vegetable oil; because of their different surface tensions, more water can be piled on top of a penny than either of the other two liquids. However, this is not the main point of the activity. Instead, students are asked to come up with an explanation for their observations about the different amounts of liquids a penny can hold. In other words, they are asked to make hypotheses that explain their observations, and because middle school students are not likely to have prior knowledge of the property of surface tension, their hypotheses are not likely to include this idea. Then they are asked to come up with ways to test their hypotheses, although they do not need to actually test their hypotheses. The important points for students to realize are that 1) the tests they devise must fit their hypotheses, and 2) the hypotheses they come up with must be testable in order to be useful.
This is a lesson about representative sampling. When given parts of the …
This is a lesson about representative sampling. When given parts of the Hubble Deep Field image, learners will count the number of galaxies in one sample section of the image. Then, they will calculate how many galaxies there are in each whole image and how many objects the Hubble Space Telescope could see in the entire Universe. This is Activity H-6 of Universe at Your Fingertips 2.0: A Collection of Activities and Resources for Teaching Astronomy DVD-ROM, which is available for purchase.
In this lesson, we learn how insects can fly in the rain. …
In this lesson, we learn how insects can fly in the rain. The objective is to calculate the impact forces of raindrops on flying mosquitoes. Students will gain experience with using Newton's laws, gathering data from videos and graphs, and most importantly, the utility of making approximations. No calculus will be used in this lesson, but familiarity with torque and force balances is suggested. No calculators will be needed, but students should have pencil and paper to make estimations and, if possible, copies of the graphs provided with the lesson. Between lessons, students are recommended to discuss the assignments with their neighbors.
You are an employee of Green Valley Dairy and your job is …
You are an employee of Green Valley Dairy and your job is to determine the mass of the company’s corn silage pile. Your boss knows that this pile is the limiting factor as to whether or not he can add animals to the herd. He is contemplating adding 500 head of cattle and needs to make sure there is enough feed in storage before they make the expansion...don’t mess up your measurements and calculations, as this is pivotal information.
Students relate thermal energy to heat capacity by comparing the heat capacities …
Students relate thermal energy to heat capacity by comparing the heat capacities of different materials and graphing the change in temperature over time for a specific material. Students learn why heat capacity is an important property of thermal energy that engineers use in many applications.
This short video, is the fifth in the National Academies Climate Change, …
This short video, is the fifth in the National Academies Climate Change, Lines of Evidence series. It focuses on greenhouse gases, climate forcing (natural and human-caused), and global energy balance.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.