Updating search results...

Search Resources

769 Results

View
Selected filters:
  • Simulation
Area of a trapezoid. Definition and formula
Read the Fine Print
Educational Use
Rating
0.0 stars

A web page and interactive applet showing the ways to calculate the area of a trapezoid. The user can drag the vertices of the trapezoid and the other points change automatically to ensure it remains a trapezoid. A grid inside the shape allows students to estimate the area visually, then check against the actual computed area. The text on the page gives three different ways to calculate the area with a formula for each. The applet uses one of the methods to compute the area in real time, so it changes as the trapezoid is reshaped with the mouse. A companion page is http://www.mathopenref.com/trapezoid.html showing the definition and properties of a trapezoid. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

Subject:
Geometry
Mathematics
Material Type:
Reading
Simulation
Provider:
Math Open Reference
Date Added:
04/08/2023
Area of a triangle (Coordinate Geometry)
Read the Fine Print
Educational Use
Rating
0.0 stars

An interactive applet and associated web page that calculate the area of a triangle using the formula method in coordinate geometry. The applet has a triangle with draggable vertices. As you drag them the triangle's area is recalculated from the vertex coordinates using the formula. The grid and coordinates can be turned on and off. The area calculation can be turned off to permit class exercises and then turned back on the verify the answers. The applet can be printed as it appears on the screen to make handouts. The web page has a full description of the method for determining area using the formula method, a worked example and has links to other pages relating to coordinate geometry. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

Subject:
Geometry
Mathematics
Material Type:
Reading
Simulation
Provider:
Math Open Reference
Date Added:
04/08/2023
Area of a triangle (conventional method)
Read the Fine Print
Educational Use
Rating
0.0 stars

An interactive applet and associated web page that explain the area of a triangle. The applet shows a triangle that can be reshaped by dragging any vertex. As it changes, the area is continually recalculated using the 'half base times height' method. The triangle has a fixed square grid in its interior that can be used to visually estimate the area for later correlation with the calculated value. The calculation can be hidden while estimation is in progress. The text page has links to a similar page that uses Heron's Formula to compute the area. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

Subject:
Geometry
Mathematics
Material Type:
Reading
Simulation
Provider:
Math Open Reference
Date Added:
04/08/2023
Area of a triangle using the box method (Coordinate Geometry)
Read the Fine Print
Educational Use
Rating
0.0 stars

An interactive applet and associated web page that calculate the area of a triangle using the box method in coordinate geometry. The applet has a triangle with draggable vertices. As you drag them the triangle's bounding box is shown and the area recalculated by subtracting the areas of the outside triangles. The grid and coordinates can be turned on and off. The area calculation can be turned off to permit class exercises and then turned back on the verify the answers. The applet can be printed as it appears on the screen to make handouts. The web page has a full description of the method for determining area using the box method, a worked example and has links to other pages relating to coordinate geometry. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

Subject:
Geometry
Mathematics
Material Type:
Reading
Simulation
Provider:
Math Open Reference
Date Added:
04/08/2023
Arithmetic
Unrestricted Use
CC BY
Rating
0.0 stars

Remember your multiplication tables? ... me neither. Brush up on your multiplication, division, and factoring skills with this exciting game. No calculators allowed! The students will be given mutiplication and division problems which they must answer. They also have the option of being given a number then stating the factors of how that number was attained using either multiplication or division.

Subject:
Mathematics
Numbers and Operations
Material Type:
Simulation
Provider:
University of Colorado
Provider Set:
PhET Interactive Simulations
Date Added:
05/01/2006
As Permafrost Thaws, Scientists Study the Risks
Read the Fine Print
Educational Use
Rating
0.0 stars

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Chemistry
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Physical Science
Material Type:
Reading
Simulation
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Josh Haner
New York Times
Date Added:
08/29/2012
An Assessment of Mass Reduction Opportunities for a 2017 - 2020 Model Year Vehicle Program
Read the Fine Print
Educational Use
Rating
0.0 stars

In this study funded by the Energy Foundation, performed by Lotus Engineering, and released by the International Council on Clean Transportation (ICCT), the potential mass reduction of a 2009 Toyota Venza is evaluated. Through advanced methodologies, Lotus replaces components with various high strength materials and reduces the quantity of components through integration. It's concluded in low development 21% mass may be reduced while cost is kept to 98% and in high development 38% mass may be reduced while cost is kept to 103%.

Subject:
Automotive Technology and Repair
Skilled Trades and Services
Material Type:
Case Study
Data Set
Simulation
Provider:
Center for Automotive Technology - Macomb
Provider Set:
Center for Advanced Automotive Technology
Author:
The International Council on Clean Transportation
Date Added:
03/03/2010
Atomic Interactions
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado
Provider Set:
PhET Interactive Simulations
Date Added:
03/09/2023
Atomic Interactions (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado
Provider Set:
PhET Interactive Simulations
Date Added:
03/09/2023
Ballistics cart
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The simulation shows a ballistics cart. If the cart is at rest on a horizontal surface, it will shoot a ball straight up in the air, and catch the ball again. What if, as in this simulation, the cart is traveling at a constant velocity horizontally, instead? Will the ball land ahead of the cart, in the cart, or behind the cart? Note that the cart fires the ball straight up, with respect to the cart, when the middle of the cart passes the small vertical trigger on the track.
Use the buttons to select the different modes (whether there is a tunnel or not, and whether to show the velocity vectors).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Boston University
Date Added:
04/27/2023
Balloons and Static Electricity
Unrestricted Use
CC BY
Rating
0.0 stars

Students explore static electricity by rubbing a simulated balloon on a sweater. As they view the charges in the sweater, balloon, and adjacent wall, they gain an understanding of charge transfer. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado
Provider Set:
PhET Interactive Simulations
Date Added:
03/09/2023
Balloons and Static Electricity (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado
Provider Set:
PhET Interactive Simulations
Date Added:
03/09/2023