Updating search results...

Search Resources

401 Results

View
Selected filters:
  • Hydrology
Natural Disaster Risk at Home
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students analyze the natural disaster threat and potential mitigation techniques of their (family) home.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Oceanography
Material Type:
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/16/2022
Natural Resources Superheroes: Lesson 2 Understanding Colorado Agriculture, Unit 3 Natural Resources, DIGS AmeriCorps Curriculum CSU
Read the Fine Print
Educational Use
Rating
0.0 stars

Natural Resources Superheroes. This is the Lesson 2 Understanding Colorado Agriculture activity from Unit 3 Natural Resources, from the DIGS (Developing Individuals, Growing Stewards) AmeriCorps Curriculum from CSU. The curriculum focuses on introducing students in grades 3-5 to Colorado agriculture, industry and environmental issues. The curriculum is matched to State Standards 2021. The curriculum upon request. Visit: https://engagement.colostate.edu/programs-old/developing-individuals-growing-stewards/

Subject:
Agriculture
Agriculture and Natural Resources
Agriculture, Natural Resources and Energy
Applied Science
Architecture and Construction
Architecture and Design
Career and Technical Education
Cultural Geography
Earth and Space Science
Ecology
Engineering
Environmental Science
Environmental Studies
Hydrology
Life Science
Physical Geography
STEAM
Skilled Trades and Services
Social Science
Material Type:
Activity/Lab
Lesson
Lesson Plan
Provider:
CSU Extension Office
Provider Set:
AmeriCorps
Date Added:
02/24/2023
Natural and Urban "Stormwater" Water Cycle Models
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their understanding of the natural water cycle and the urban "stormwater" water cycle, as well as the processes involved in both cycles to hypothesize how the flow of water is affected by altering precipitation. Student groups consider different precipitation scenarios based on both intensity and duration. Once hypotheses and specific experimental steps are developed, students use both a natural water cycle model and an urban water cycle model to test their hypotheses. To conclude, students explain their results, tapping their knowledge of both cycles and the importance of using models to predict water flow in civil and environmental engineering designs. The natural water cycle model is made in advance by the teacher, using simple supplies; a minor adjustment to the model easily turns it into the urban water cycle model.

Subject:
Applied Science
Earth and Space Science
Engineering
Hydrology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Natural and Urban "Stormwater" Water Cycles
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an overview of the components of the hydrologic cycle and the important roles they play in the design of engineered systems, students' awareness of the world's limited fresh water resources is heightened. The hydrologic cycle affects everyone and is the single most critical component to life on Earth. Students examine in detail the water cycle components and phase transitions, and then learn how water moves through the human-made urban environment. This urban "stormwater" water cycle is influenced by the pervasive existence of impervious surfaces that limit the amount of infiltration, resulting in high levels of stormwater runoff, limited groundwater replenishment and reduced groundwater flow. Students show their understanding of the process by writing a description of the path of a water droplet through the urban water cycle, from the droplet's point of view. The lesson lays the groundwork for rest of the unit, so students can begin to think about what they might do to modify the urban "stormwater" water cycle so that it functions more like the natural water cycle. A PowerPoint® presentation and handout are provided.

Subject:
Applied Science
Earth and Space Science
Engineering
Hydrology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
A New Generation of Water Planners Confronts Change Along the Colorado River
Unrestricted Use
Public Domain
Rating
0.0 stars

Reduced flows and increased demand for Colorado River water represent a real and present danger in the West. To address the threat, water managers and modelers initiated a study to understand the system, consider options, and take action.

Subject:
Earth and Space Science
Hydrology
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/09/2016
Non-traditional and under-represented students in hydrogeology: Learning by discovery in an urban environment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Background:
In my experience, I have discovered many common roadblocks to non-traditional and under-represented student participation in hydrogeology:
Time constraints -- many students have complicated schedules and demands on their time that a traditional undergraduate does not have. For example, many of these students are working full time, and required experiences outside of the classroom often pose scheduling conflicts for students.

Communication skills -- many under-represented students arrive in the classroom with communication skills that are not fully developed. Students are often learning English as they are learning the complex vocabulary of hydrogeology.

Math skills -- many students are under prepared in math and/or have math phobias

Funding -- many students are unable to pay laboratory and field trip fees.

I currently teach at minority serving institution. Here, I find that hands-on practice is the most successful learning experience for students. Students grasp concepts such as discharge, flux, and residence time more effectively when they are active participants in the learning process. The most effective method I have found for addressing these issues and encouraging under represented student participation in hydrogeology is to create student-designed group research projects. I used this strategy three quarters in a row, and the same students (as well as new students they recruit) continue to sign up for these courses. This trend, in addition to students' growing confidence in engaging in the scientific method, is my primary evidence for success.

Resources are very limited at my institution, so here are a couple of suggestions that work well.
Borrow equipment -- from other universities, from consulting companies, from colleagues.

Simplify analyses -- many interesting conclusions can be drawn from simply pH, conductivity, and temperature data. But, there are also relatively inexpensive test kits on the market that are sufficient for class purposes (ex. LaMotte urban water test kit ~$30).

Description
Everyone will have different class sizes, student preparation levels, and goals when attempting an exercise like this, so I will provide general information, which others can modify to meet their needs. Below I briefly outline the steps I take the students through during the project and highlight ideas for improving success for the targeted groups.

Form groups -- depending on class size, 2-4 students per group (I try to ensure the groups are balanced based on skills and student interests)
Choose topic -- I usually provide a list of possible topics and have students adapt a topic from the list that interests them. Students require a lot of guidance at this stage to assure selection of a manageable topic for a quarter-long project. This is the most important step - guiding students into a topic they are passionate about and where they can be successful is key. Students usually have no shortage of questions they want to answer about water in an urban environment! Since most of the students have spent their whole lives in an urban situation, they are deeply passionate about these issues.
Research literature -- students perform a background search for previous work on their topic to help guide them. I provide a laboratory session on how to search the library and databases for related information, as well as provide a list of recommended journals and websites. In addition, students locate supporting data (discharge, well levels, precipitation)
Plan study -- we discuss study design, sample types, sampling location, frequency. During this phase, students use maps, study weather patterns, and determine site accessibility.
Collect data -- we set aside lab periods for collecting data together. These are the sessions where you should be prepared to answer all sort of questions. Once the students begin implementing their study, many new questions come up.
Analyze and interpret results -- multiple lab periods are used to analyze data; student data are the basis of the remainder of labs. Techniques discussed are applied to their group projects.
Present findings -- students assemble posters and present results to their classmates.

Urban topics
Below is a short list of topics to stimulate ideas. Equipment required includes pH meter, conductivity meter, flow meter, Lamotte test kits.
Sources of N and P to the Los Angeles River
Contribution of golf courses to urban runoff
Extent of tidal influence on Ballona Creek
Metal fluxes from storm drains to the ocean
Relationship of land use to water quality
Relationship of population demographics to water quality

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Business and Communication
Chemistry
Earth and Space Science
Hydrology
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
11/28/2021
Normal Climate Patterns
Unrestricted Use
CC BY
Rating
0.0 stars

This activity develops students' understanding of climate by having them make in-depth examinations of historical climate patterns using both graphical and map image formats rather than presenting a general definition of climate. Students explore local climate in order to inform a pen pal what type of weather to expect during an upcoming visit. Students generate and explore a variety of graphs, charts, and map images and interpret them to develop an understanding of climate.

Subject:
Agriculture and Natural Resources
Applied Science
Earth and Space Science
Environmental Science
Environmental Studies
Hydrology
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Date Added:
03/09/2023
Observations on Darcy's Law
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Before class, I prepare several "Darcy columns". These are plastic water bottles with a hole in the bottom that is covered with mesh and a rubber stopper. The bottles are filled with soil and water and are capped. One bottle is the reference bottle, with sand of height hs, and water of height hw, and a standard bottle diameter. Each of the remaining bottles are filled with one of the parameters varied: e.g., gravel instead of sand, silt instead of sand, sand of height 2hs instead of hs, water of height 2hw instead of hw, larger diameter bottle, etc. In class, student split into groups and each group is given a bottle, flexible ruler, funnel, graduated cylinder, and a large cup of water. As a group, they note the material type, measure the flow area, measure the height of porous material, and measure the difference in head across the porous material. Then they measure the flow rate, while maintaining a constant head. They repeat the flow measurement for their column, and then they repeat the process with one or more other columns, depending on the time available. Each group records their results on a table, and the class results are tabulated on the board. As a class, we discuss the whether or not their results follow Darcy's law. We also discuss the measurement errors, repeatability of the results, and the differences in flow rate for sand, gravel, and silt.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/27/2019
Ocean Acidification: A Systems Approach to a Global Problem
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this curriculum module, students in high school life science, marine science, and/or chemistry courses act as interdisciplinary scientists and delegates to investigate how the changing carbon cycle will affect the oceans along with their integral populations.

The oceans cover 70 percent of the planet and play a critical role in regulating atmospheric carbon dioxide through the interaction of physical, chemical, and biological processes. As a result of anthropogenic activity, a doubling of the atmospheric CO2 concentration (to 760 ppm) is expected to occur by the end of this century. A quarter of the total CO2 emitted has already been absorbed by the surface oceans, changing the marine carbonate system, resulting in a decrease in pH, a change in carbonate-ion concentrations, and a change in the speciation of macro and micronutrients. The shift in the carbonate system is already drastically affecting biological processes in the oceans and is predicted to have major consequences on carbon export to the deep ocean with reverberating effects on atmospheric CO2. Put in simple terms, ocean acidification is a complex phenomenon with complex consequences. Understanding complexity and the impact of ocean acidification requires systems thinking – both in research and in education. Scientific advancement will help us better understand the problem and devise more effective solutions, but executing these solutions will require widespread public participation to mitigate this global problem.

Through these lessons, students closely model what is occurring in laboratories worldwide and at Institute for Systems Biology (ISB) through Monica Orellana’s research to analyze the effect CO2 has on ocean chemistry, ecosystems and human societies. Students experiment, analyze public data, and prepare for a mock summit to address concerns. Student groups represent key “interest groups” and design two experiments to observe the effects of CO2 on seawater pH, diatom growth, algal blooms, nutrient availability, and/or shell dissolution.

Subject:
Agriculture and Natural Resources
Anthropology
Applied Science
Atmospheric Science
Biology
Chemistry
Computer, Networking and Telecommunications Systems
Earth and Space Science
Environmental Science
Environmental Studies
Genetics
Hydrology
Information Science
Life Science
Maritime Science
Oceanography
Physical Science
Social Science
Material Type:
Module
Author:
Aisha McKee
Alexis Boleda
Alexis Valauri-Orton
Allison Lee Cusick
Anna Farrell-Sherman
Baliga Lab
Barbara Steffens
Claudia Ludwig
Danny Thomson
Dexter Chapin
Dina Kovarik
Donald Cho
Eric Grewal
Eric Muhs
Helen Ippolito
Holly Kuestner
Institute for Systems Biology
Jeannine Sieler
Jennifer Duncan-Taylor
Jia Hao Xu
JoAnn Chrisman
Jocelyn Lee
Kedus Getaneh
Kevin Baker
Mari Knutson Herbert
Megan DeVault
Meredith Carlson
Michael Walker
Monica V. Orellana
Nitin S. Baliga
Olachi Oleru
Raisah Vestindottir
Steven Do
Systems Education Experiences
William Harvey
Zac Simon
Date Added:
05/04/2023
Ocean Water Desalination
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the techniques engineers have developed for changing ocean water into drinking water, including thermal and membrane desalination. They begin by reviewing the components of the natural water cycle. They see how filters, evaporation and/or condensation can be components of engineering desalination processes. They learn how processes can be viewed as systems, with unique objects, inputs, components and outputs, and sketch their own system diagrams to describe their own desalination plant designs.

Subject:
Applied Science
Earth and Space Science
Engineering
Hydrology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Old Sticks in the Mud: Hazards of Lahars from Mount Rainier Volcano
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Volcanic debris flows (lahars) flow long distances, bury and aggrade river valleys, and cause long-term stream disturbances and dramatic landscape changes. Students will evaluate the nature, scale, and history of past lahars from Mount Rainier in a river valley and interpret the past and potential future impact on humans of lahars.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Hydrology
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
11/04/2021
Optics Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students will calculate the index of refraction of water by measuring the angles of incidence and refraction of light as it passes from air to water. They will follow directions to set up the experiment with cheaply available materials, make several measurements, then answer follow-up questions regarding the mathematical relationship between angles of incidence and refraction, experimental error and uncertainty.

Subject:
Applied Science
Earth and Space Science
Environmental Science
Hydrology
Physical Geography
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
04/12/2023
The Other Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

For students that have already been introduced to the water cycle this lesson is intended as a logical follow-up. Students will learn about human impacts on the water cycle that create a pathway for pollutants beginning with urban development and joining the natural water cycle as surface runoff. The extent of surface runoff in an area depends on the permeability of the materials in the ground. Permeability is the degree to which water or other liquids are able to flow through a material. Different substances such as soil, gravel, sand, and asphalt have varying levels of permeability. In this lesson, along with the associated activities, students will learn about permeability and compare the permeability of several different materials for the purpose of engineering landscape drainage systems.

Subject:
Applied Science
Earth and Space Science
Engineering
Hydrology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Particle Size Analysis, Soil Texture, and Hydraulic Conductivity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Lab: Particle Size Analysis, Soil Texture, and Hydraulic Conductivity

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Hydrology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/06/2019
Pathogenic Microorganisms in Water
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Pathogenic Microorganisms in Water: Traditionally, groundwater has been used without treatment because the soil acts as a filter, removing pathogenic microorganisms. Some potential sources of pathogens (or disease causing organisms) in groundwater include septic tanks, leaking sewer lines, sewage sludge, intentional groundwater recharge with sewage, irrigation with sewage, direct injection of sewage, domestic solid waste disposal (landfills) and sewage oxidation ponds. The objective of the session is to introduce hydrogeologist to the types of microorganisms, sources of pathogens, and a simple exercise that can be incorporated into a hydrogeology class.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Chemistry
Earth and Space Science
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
01/25/2021
Permeable Pavement
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate how different riparian ground covers, such as grass or pavement, affect river flooding. They learn about permeable and impermeable materials through the measurement how much water is absorbed by several different household materials in a model river. Students use what they learn to make recommendations for engineers developing permeable pavement. Also, they consider several different limitations for design in the context of a small community.

Subject:
Applied Science
Earth and Space Science
Engineering
Hydrology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
The Physics of Fluid Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.

Subject:
Applied Science
Earth and Space Science
Engineering
Hydrology
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Piscinas Anquialinas Equipo STEM
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Piscinas Anquialinas Equipo STEM. Este equipo proporciona recursos para socios del Parque Histórico Nacional Kaloko-Honokōhau en Hawái. El equipo incluye referencias al idioma nativo hawaiano y la ecología con una entrevista con el tío Fred Cachola, un ambientalista local. El Centro de Extensión y Educación en Ciencias Naturales colabora con la facultad de CSU, los Parques Nacionales y los programas de ciencia ciudadana para traducir su investigación científica actual en experiencias STEM únicas para los estudiantes en forma de kits educativos que se pueden prestar. Cada kit contiene casi todos los materiales necesarios (menos cosas comunes como agua y toallas de papel) para explorar algunos temas de investigación científica realmente interesantes. enviando un formulario de recogida local o un formulario de entrega disponible en el sitio web vinculado. Utilice la información de contacto en la página de descripción general del kit STEM para obtener más información. https://www.cns-eoc.colostate.edu/stem-kits/ Este kit se proporciona de forma gratuita para uso educativo.

Subject:
Agriculture
Agriculture and Natural Resources
Anthropology
Applied Science
Arts and Humanities
Atmospheric Science
Biology
Business and Communication
Career and Technical Education
Chemistry
Comprehensive Health and Physical Education
Cultural Geography
Earth and Space Science
Ecology
Economics
English Language Arts
Environmental Science
Environmental Studies
Ethnic Studies
Geology
Geoscience
History
Hydrology
Languages
Life Science
Management
Maritime Science
Modeling and Simulation
Nutrition
Oceanography
Physical Geography
Physical Science
Physics
Political Science
Reading Informational Text
Religious Studies
Social Science
U.S. History
World Cultures
World History
World Languages
Zoology
Material Type:
Activity/Lab
Case Study
Diagram/Illustration
Educational Kit
Interactive
Lesson
Lesson Plan
Primary Source
Reading
Simulation
Student Guide
Unit of Study
Provider:
Colorado State University
Provider Set:
Natural Sciences Education & Outreach Center
Date Added:
02/24/2023