Students are presented with a hypothetical scenario that delivers the unit's Grand …
Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.
This is a description of a student experiment that teachers can adapt …
This is a description of a student experiment that teachers can adapt to allow students to prove that electric current produces a magnetic field. The sample includes a specific example of how to do the experiment which can be adapted to an inquiry investigation by having students complete the initial experiment and then write their investigation question and further investigate the phenomena. When completing this as a demonstration or student experiment batteries can be substituted for the variable power supply if power supplies are not available or convenient to use. The voltage provided to the circuit can be easily manipulated by changing the number of batteries connected.
In this activity, the students will complete the grand challenge and design …
In this activity, the students will complete the grand challenge and design an electromagnet to separate steel from aluminum for the recycler. In order to do this, students compare the induced magnetic field of an electric current with the magnetic field of a permanent magnet and must make the former look like the latter. They discover that looping the current produces the desired effect and find ways to further strengthen the magnetic field.
The interactions of electrons with matter have great explanatory power and are …
The interactions of electrons with matter have great explanatory power and are central to many technologies from transistors, diodes, smoke detectors, and dosemeters to sophisticated imaging, lasers, and quantum computing. A conceptual grasp of the interactions of electrons in general allows students to acquire deeper understanding that can be applied to a very broad range of technologies.
Students learn about current electricity and necessary conditions for the existence of …
Students learn about current electricity and necessary conditions for the existence of an electric current. Students construct a simple electric circuit and a galvanic cell to help them understand voltage, current and resistance.
Use a series of interactive models and games to explore electrostatics. Learn …
Use a series of interactive models and games to explore electrostatics. Learn about the effects positive and negative charges have on one another, and investigate these effects further through games. Learn about Coulomb's law and the concept that both the distance between the charges and the difference in the charges affect the strength of the force. Explore polarization at an atomic level, and learn how a material that does not hold any net charge can be attracted to a charged object. Students will be able to:
This resource is designed as a module with a storybook or web …
This resource is designed as a module with a storybook or web story, and four activities. In the storybook, the GLOBE Kids investigate colors in the sky and learn how air pollution affects sky color and our health. Learning activities engage students in describing sky color and conditions in the atmosphere, creating a model to learn how sky color and visibility are affected by aerosols, using prisms to explore properties of light and colors, and collecting aerosol samples.
Each student will keep a science journal during each of the four …
Each student will keep a science journal during each of the four seasons. Students will record observations of the general outdoor environment they visit and then will make observations of one specific item from the habitat in each season. At the end of the school year, students will make comparisons of their seasonal drawings and share the results with the class. The purpose of the activity is to introduce students to the concept of using a science journal to record information, to have students use science tools to make scientific observations and to make observational drawings in nature and compare the results throughout the seasons. After completing this activity, students will know about seasonal changes in a particular habitat. They will learn how to make detailed observations, record their results, make comparisons, and share information using a standard format.
Through learning activities, students learn how weather over a long period of …
Through learning activities, students learn how weather over a long period of time describes climate, explore how sea level rise can affect coastal communities and environments, and describe how humans are contributing to climate change and how we can take action to solve this problem.
The class will brainstorm, write, create, and produce a play in which …
The class will brainstorm, write, create, and produce a play in which they represent how all the Earth systems are interconnected. This play can be based on the Elementary GLOBE book "All About Earth: Our World on Stage" or on other student-generated topics representing interconnections of the Earth systems. The purpose of the play is to serve as a performance assessment providing students with the opportunity to display what they have learned about the Earth as a system in a creative manner. Through this activity, students will demonstrate their knowledge of how the hydrosphere, atmosphere, geosphere and biosphere interact.
A learning activity for the "All About Earth: Our World on Stage" …
A learning activity for the "All About Earth: Our World on Stage" book in the Elementary GLOBE series. In pairs, students will create experimental conditions in terrariums in order to study what plants need to live. Variables to study include the presence or absence of soil, water, and sunlight. Students will record the growth of radish plants as well as observations of "the water cycle" in their terrariums. At the conclusion of their experiments, students will share their results with the class and discuss how water, Earth materials, and air are all necessary to support living things. The purpose of the activity is to acquaint students with the hydrosphere, geosphere, atmosphere, and biosphere more closely, to have students use microcosms to study natural phenomena, and to introduce students to the concept of a "fair test" in a scientific investigation. After completing this activity, students will know about the importance of the hydrosphere, geosphere, and atmosphere in supporting the biosphere. They will learn how to set up "fair test", record detailed observations, use drawings as scientific records, make sense of experimental results, and share them publicly.
Several activities that introduce students to the concepts of earth as a …
Several activities that introduce students to the concepts of earth as a series of systems that are all connected. All of the activities reinforce the idea that water, air, soil, and living things all interact in the Earth system. There are several components that educators can choose to use: a book, a play, two activities, and two coloring pages.
In this activity, students will record a list of things they already …
In this activity, students will record a list of things they already know about hummingbirds and a list of things they would like to learn about hummingbirds. Then they will conduct research to find answers to their questions. Using their new knowledge, each student will make a hummingbird out of art supplies. Finally, using their hummingbirds as props, the students will play charades to test each other in their knowledge of the ruby-throated hummingbirds. The purpose of this activity is to provide students with information on ruby-throated hummingbirds, provide students with the opportunity to conduct research on hummingbirds in topic areas that interest them, and to provide students with opportunities to share their knowledge with other students. By completing this activity, students will gain knowledge about ruby-throated hummingbirds. They will also gain experience researching a topic of their choosing related to hummingbirds and communicating those results in several different formats.
Students will learn about magnification and how a magnifying lens works. They …
Students will learn about magnification and how a magnifying lens works. They will examine a variety of different objects, first without a magnifier and then with a magnifier, and compare what they observe. They will practice observing details of these objects with magnifying lens. The purpose of this activity is for students to learn about observation skills and how tools can help people make observations, what "magnification" means, and to learn that scientists use tools, such as magnifying lenses, to examine objects. Students will be able to identify a magnifying glass and its purposes. They will be able to describe how the same object looks different when using the unaided eye versus a magnifying lens.
Students will use various objects in the classroom to experiment with nonstandard …
Students will use various objects in the classroom to experiment with nonstandard measurement. They will make estimates and test them out. Then, working in pairs or small groups, students will use a ruler or a measuring tape to become familiar with how to use these tools for standard linear measurement. The purpose of this activity is to practice making standard and non-standard measurement and to learn the purpose of making linear measurements and how to apply them to scientific investigations. Students will learn how to make measurements, both nonstandard and standard (with a ruler). They will test their estimates and record their results.
In these activities and story book, students wonder why hummingbirds have stopped …
In these activities and story book, students wonder why hummingbirds have stopped visiting their school. They learn about the needs of the hummingbirds, the seasonal changes where they live, and the environment where the hummingbirds spend the winter. Students describe the seasonal changes in a local habitat, observe how colors in nature change through the seasons, and research hummingbirds.
Using a color chart, students will make observations outside during each of …
Using a color chart, students will make observations outside during each of the four seasons. During each session, they will try to find as many colors as possible and record what they see. As a class, they will make charts describing the colors they find in each season. At the end of the school year, students will compare their results and generate conclusions about variations in colors in nature both within a season and between different seasons. The purpose of this activity is to provide the opportunity for students to make observations in nature and compare their results, to help students understand seasonal changes as they relate to colors in their environment, and to engage students in active observation and recording skills. After completing this activity, students will understand how colors in nature relate to their local environment and to seasonal changes within that environment. Students will practice observation and recording skills, make comprehensive comparisons, and will form a hypothesis based on the information they have assembled throughout the school year.
A learning activity for the Scoop on Soils book in the Elementary …
A learning activity for the Scoop on Soils book in the Elementary GLOBE Series. Each student will explore three activities that promote understanding of and respect for soil. They will generate responses to the following questions: "What makes up soil?" and "What lives in the soil?" Next the students will watch a demonstration of how much soil there is on Earth that is available for human use. Last they will create their own soil connection sentences. The purpose of this activity is to introduce students to the importance of soil and why it needs to be studied, to help students understand how much soil is available on Earth for human use, and to help students understand the connection between soil and how it is used by living things. After completing this activity, students will understand the importance of soil science, comprehend the relative amounts of usable soil that exists on Earth, and learn the function of soil as it pertains to animals, plants and humans.
A learning activity for the "All About Earth: Our World on Stage" …
A learning activity for the "All About Earth: Our World on Stage" book in the Elementary GLOBE series. One of the "big ideas" in Earth system science is the notion of interaction among parts of the Earth system. In the Elementary GLOBE book All About Earth: Our World on Stage, the children in Ms. Patel's class discuss instances of how the four major spheres of Earth's system interact. They symbolize these interactions by using large arrows to link the system components: air, water, soil, living things and the Sun. In this activity, students continue to explore the idea of interaction among Earth components as they identify processes in the Earth system and indicate how they illustrate an interaction between two of the Earth system components. The purpose of the activity is to help students deepen their understanding of interconnections among Earth's systems, help students to identify processes where Earth's systems are interacting, and to provide practice in the observation and recording of natural phenomena. After completing this activity, students will understand that Earth system interactions are all around them, going on all the time, and that Earth's processes are interconnected. They will learn how to make observations and identify the interactions they illustrate.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.