Updating search results...

Next Generation Science Standards

Next Generation Science Standards

1637 affiliated resources

Search Resources

View
Selected filters:
100th Day of School Activities
Read the Fine Print
Educational Use
Rating
0.0 stars

Resources to mark the 100th day of school with math activities. Challenge students to generate 100 different ways to represent the number 100. Students will easily generate 99 + 1 and 50 + 50, but encourage them to think out of the box. Challenge them to include examples from all of the NCTM Standards strands: number sense, numerical operations, geometry, measurement, algebra, patterns, data analysis, probability, discrete math, Create a class list to record the best entries. Some teachers write 100 in big bubble numeral style and then record the entries inside the numerals.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Mathwire
Date Added:
04/08/2023
20/20 Vision
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students determine their own eyesight and calculate what a good average eyesight value for the class would be. Students learn about technologies to enhance eyesight and how engineers play an important role in the development of these technologies.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/26/2008
2050
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This interactive addresses the question if we can reduce CO2 emissions by 20% of 1990 levels and help avoid dangerous climate change? Users of this interactive can manipulate changes to various sources and uses (supply and demand) of energy with the goal of reducing C02 emissions in Great Britain by 80% in the year 2050.

Subject:
Agriculture and Natural Resources
Applied Science
Environmental Science
Environmental Studies
Physical Science
Material Type:
Simulation
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Date Added:
03/09/2023
2-Day Investigation of Soil Samples
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is designed for a primary classroom (outdoors & indoors) investigation where students collect and investigate soil samples and describe the soils, looking for similarities and differences. Students develop a method of recording the data colleted and can present the information gathered.

Subject:
Ecology
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
04/12/2023
3RC (Reduce, Reuse, Recycle and Compost)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students expand their understanding of solid waste management to include the idea of 3RC (reduce, reuse, recycle and compost). They will look at the effects of packaging decisions (reducing) and learn about engineering advancements in packaging materials and solid waste management. Also, they will observe biodegradation in a model landfill (composting).

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
6.1 Light & Matter
Unrestricted Use
CC BY
Rating
0.0 stars

How does a one-way mirror work? Though most everyone knows that one-way mirrors exist, having students model how they work turns out to be a very effective way to develop their thinking about how visible light travels and how we see images. Initial student models reveal a wide variety of ideas and explanations that motivate the unit investigations that help students figure out what is going on and lead them to a deeper understanding of the world around them.

As the first unit in the OpenSciEd program, during the course of this unit, students also develop the foundation for classroom norms for collaboration that will be important across the whole program.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023
6.2 Thermal Energy
Unrestricted Use
CC BY
Rating
0.0 stars

This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer than the regular plastic cup that comes free with the drink.

Through a series of lab investigations and simulations, students find two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023
6.2 Thermal Energy
Unrestricted Use
CC BY
Rating
0.0 stars

Unit Summary
This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer compared to the regular plastic cup that comes free with the drink. Students find that the drink in the regular cup warms up more than the drink in the special cup. This prompts students to identify features of the cups that are different, such as the lid, walls, and hole for the straw, that might explain why one drink warms up more than the other. 
Students investigate the different cup features they conjecture are important to explaining the phenomenon, starting with the lid. They model how matter can enter or exit the cup via evaporation However, they find that in a completely closed system, the liquid inside the cup still changes temperature. This motivates the need to trace the transfer of energy into the drink as it warms up. Through a series of lab investigations and simulations, students find that there are two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints.
This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS1-4*, MS-PS3-3, MS-PS3-4, MS-PS3-5, MS-PS4-2*, MS-ETS1-4. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Subject:
Physical Science
Material Type:
Activity/Lab
Lesson
Module
Provider:
OpenSciEd
Date Added:
04/14/2023
6.4 Plate Tectonics & Rock Cycling
Unrestricted Use
CC BY
Rating
0.0 stars

In this plate tectonics and rock cycling unit, students come to see that the Earth is much more active and alive than they have thought before. The unit launches with documentation of a 2015 Himalayan earthquake that shifted Mt. Everest suddenly to the southwest direction. Students read texts, explore earthquake and landform patterns using a data visualization tool, and study GPS data.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Date Added:
04/14/2023
6.5 Natural Hazards
Unrestricted Use
CC BY
Rating
0.0 stars

This unit begins with students experiencing, through text and video, a devastating natural event that caused major flooding in coastal towns of Japan. Through this anchoring phenomenon, students think about ways to detect tsunamis, warn people, and reduce damage from the wave. As students design solutions to solve this problem, they begin to wonder about the natural hazard itself: what causes it, where it happens, and how it causes damage.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Atmospheric Science
Earth and Space Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Date Added:
04/14/2023
6.6 Cells & Systems
Unrestricted Use
CC BY
Rating
0.0 stars

This unit launches with students hearing about an injury that happened to a middle school student that caused him to need stitches, pins, and a cast. They analyze doctor reports and develop an initial model for what is going on in our body when it heals. Students investigate what the different parts of our body are made of, from the macro scale to the micro scale. They figure out parts of our body are made of cells and that these cells work together for our body to function.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Life Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Date Added:
04/14/2023
7.1 Chemical Reactions & Matter Transformations
Unrestricted Use
CC BY
Rating
0.0 stars

To pique students’ curiosity and anchor the learning for the unit in the visible and concrete, students start with an experience of observing and analyzing a bath bomb as it fizzes and eventually disappears in the water. Their observations and questions about what is going on drive learning that digs into a series of related phenomena as students iterate and improve their models depicting what happens during chemical reactions. By the end of the unit, students have a firm grasp on how to model simple molecules, know what to look for to determine if chemical reactions have occurred, and apply their knowledge to chemical reactions to show how mass is conserved when atoms are rearranged.

Subject:
Life Science
Physical Science
Material Type:
Lesson
Lesson Plan
Module
Teaching/Learning Strategy
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023
7.2 Chemical Reactions & Energy
Unrestricted Use
CC BY
Rating
0.0 stars

In this 21-day unit, students are introduced to the anchoring phenomenon—a flameless heater in a Meal, Ready-to-Eat (MRE) that provides hot food to people by just adding water. Students explore the inside of an MRE flameless heater, then do investigations to collect evidence to support the idea that this heater and another type of flameless heater are undergoing chemical reactions as they get warm. Students have an opportunity to reflect on the engineering design process, defining stakeholders, and refining the criteria and constraints for the design solution.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Date Added:
04/14/2023
7.3 Metabolic Reactions
Unrestricted Use
CC BY
Rating
0.0 stars

This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor.

Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people.

Subject:
Life Science
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023
7.4 Matter Cycling & Photosynthesis
Unrestricted Use
CC BY
Rating
0.0 stars

Students figure out that they can trace all food back to plants, including processed and synthetic food. They obtain and communicate information to explain how matter gets from living things that have died back into the system through processes done by decomposers. Students finally explain that the pieces of their food are constantly recycled between living and nonliving parts of a system.

Subject:
Life Science
Physical Science
Material Type:
Lesson
Lesson Plan
Module
Teaching/Learning Strategy
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023
7.4 Matter Cycling & Photosynthesis - Unit Overview
Unrestricted Use
CC BY
Rating
0.0 stars

This unit on matter cycling and photosynthesis begins with students reflecting on what they ate for breakfast. Students are prompted to consider where their food comes from and consider which breakfast items might be from plants. Then students taste a common breakfast food, maple syrup, and see that according to the label, it is 100% from a tree.

Based on the preceding unit, students argue that they know what happens to the sugar in syrup when they consume it. It is absorbed into the circulatory system and transported to cells in their body to be used for fuel. Students explore what else is in food and discover that food from plants, like bananas, peanut butter, beans, avocado, and almonds, not only have sugars but proteins and fats as well. This discovery leads them to wonder how plants are getting these food molecules and where a plant’s food comes from.

Subject:
Biology
Life Science
Material Type:
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023
7.5 Ecosystem Dynamics
Unrestricted Use
CC BY
Rating
0.0 stars

How does changing an ecosystem affect what lives there? This unit on ecosystem dynamics and biodiversity begins with students reading headlines that claim that the future of orangutans is in peril and that the purchasing of chocolate may be the cause. Students then examine the ingredients in popular chocolate candies and learn that one of these ingredients--palm oil--is grown on farms near the rainforest where orangutans live. This prompts students to develop initial models to explain how buying candy could impact orangutans.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Agriculture and Natural Resources
Applied Science
Atmospheric Science
Earth and Space Science
Engineering
Environmental Studies
Life Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Date Added:
04/14/2023
8.1 Contact Forces
Unrestricted Use
CC BY
Rating
0.0 stars

Oh, no! I’ve dropped my phone! Most of us have experienced the panic of watching our phones slip out of our hands and fall to the floor. We’ve experienced the relief of picking up an undamaged phone and the frustration of the shattered screen. This common experience anchors learning in the Contact Forces unit as students explore a variety of phenomena to figure out, “Why do things sometimes get damaged when they hit each other?”

Student questions about the factors that result in a shattered cell phone screen lead them to investigate what is really happening to any object during a collision. They make their thinking visible with free-body diagrams, mathematical models, and system models to explain the effects of relative forces, mass, speed, and energy in collisions. Students then use what they have learned about collisions to engineer something that will protect a fragile object from damage in a collision. They investigate which materials to use, gather design input from stakeholders to refine the criteria and constraints, develop micro and macro models of how their solution is working, and optimize their solution based on data from investigations. Finally, students apply what they have learned from the investigation and design to a related design problem.

Subject:
Applied Science
Physical Science
Material Type:
Activity/Lab
Lesson
Lesson Plan
Module
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023
8.2 Sound Waves
Unrestricted Use
CC BY
Rating
0.0 stars

Unit Summary
In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music.
They make observations of sound sources to revisit the K–5 idea that objects vibrate when they make sounds. They figure out that patterns of differences in those vibrations are tied to differences in characteristics of the sounds being made. They gather data on how objects vibrate when making different sounds to characterize how a vibrating object’s motion is tied to the loudness and pitch of the sounds they make. Students also conduct experiments to support the idea that sound needs matter to travel through, and they will use models and simulations to explain how sound travels through matter at the particle level.
This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS4-1, MS-PS4-2. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Subject:
Physical Science
Material Type:
Activity/Lab
Lesson
Module
Provider:
OpenSciEd
Date Added:
04/14/2023
8.2 Sound Waves
Unrestricted Use
CC BY
Rating
0.0 stars

In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Date Added:
04/14/2023