Updating search results...

Search Resources

236 Results

View
Selected filters:
  • Architecture and Design
Designing Handoffs Lesson
Unrestricted Use
CC BY
Rating
0.0 stars

In courses and programs with community-sponsored or industry-sponsored projects, the handoff between the design team and the sponsoring partner is a particularly vulnerable transition. Innovations with the potential for impact fail shortly after the handoff for myriad reasons, including: inadequate resource allocation (time, money, skills); no clear institutional champion; inadequate institutional will to see the concept through further trial, iteration, and growth; and more. What might it look like to design the handoff? This lesson prompts design students (high school through graduate school) to begin a design project within a design project: to empathize with the handoff’s stakeholders; to define the handoff’s key needs and opportunities; to ideate novel handoff artifacts, strategies, and processes; to prototype improvements to their intended handoff strategy; and to test these strategies before the class or program ends so they can make adjustments and improvements.

Subject:
Applied Science
Architecture and Design
Material Type:
Activity/Lab
Lecture Notes
Lesson Plan
Provider:
Dartmouth College
Author:
Anthony Fosu
Ava Ori
Nitya Agarwala
Rafe Steinhauer
Date Added:
05/11/2023
Designing a Package that Works
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams act as engineers and brainstorm, design, create and test their ideas for packaging to protect a raw egg shipped in a 9 x 12-in envelope. They follow the steps of the engineering design process and aim for a successful solution with no breakage, low weight, minimal materials and recyled/reused materials. Students come to understand the multi-faceted engineering considerations associated with the packaging of items to preserve, market and safely transport goods.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Designing a Winning Guest Village in the Saguaro National Park
Read the Fine Print
Educational Use
Rating
0.0 stars

The Challenge Question of the Legacy Cycle draws the student into considering the engineering ingenuity of nature. It will force him to analyze, appreciate and understand the wisdom of these designs as the student team focuses on meeting each of the challenge's requirements. The student is asked, with his team members, to envision a sustainable design for a future guest village within the Saguaro National Park, outside of Tucson, Arizona. What issues need to be addressed to support the comforts of park visitors without compromising the natural resources or endangering the endemic species of the area? A deeper scope of application will reveal extensions of this design in the incorporation of urban planning and systems design. It also strengthens the concept of manufacturing and building without producing waste or pollution.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Designing for All
Unrestricted Use
CC BY
Rating
0.0 stars

The goal of the Designing for All: A Toolkit for Maximum Digital impact is to provide resources for instructors at Vancouver Island University to create digitally accessible courses for their students. It focuses on the suite of tools supported by the Centre for Innovation and Excellence in Learning (CIEL). A giant thank you to BCcampus and their Accessibility Toolkit - 2nd Edition. We were able to rely heavily on the content provided in that publication in the creation of our own version. Thank you for your hard work.

Subject:
Applied Science
Architecture and Design
Material Type:
Textbook
Provider:
British Columbia/Yukon Open Authoring Platform
Author:
Anwen Burk
Kathleen Bortolin
Sylvie Lafrenière
Date Added:
12/16/2020
Ding! Going Up? Elevators and Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create model elevator carriages and calibrate them, similar to the work of design and quality control engineers. Students use measurements from rotary encoders to recreate the task of calibrating elevators for a high-rise building. They translate the rotations from an encoder to correspond to the heights of different floors in a hypothetical multi-story building. Students also determine the accuracy of their model elevators in getting passengers to their correct destinations.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
ENTC 2160: Architectural CAD Instructional Materials
Unrestricted Use
CC BY
Rating
0.0 stars

Instructional materials for the course "ENTC 2160: Architectural CAD" include videos demonstrating how to create CAD drawings and use CAD tools. Videos cover the following topics: exterior walls, interior walls, doors, windows, dimensioning, linetypes, electrical, slab, stairs, hatching, fireplaces, and roofing.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Lecture
Syllabus
Provider:
East Tennessee State University
Author:
Keith Johnson
Mohammad Moin Uddin
Date Added:
05/11/2023
Ecology at Work
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how rooftop gardens help the environment and the lives of people, especially in urban areas. They gain an understanding of how plants reduce the urban heat island effect, improve air quality, provide agriculture space, reduce energy consumption and increase the aesthetic quality of cities. This draws upon the science of heat transfer (conduction, convection, radiation, materials, color) and ecology (plants, shade, carbon dioxide, photosynthesis), and the engineering requirements for rooftop gardens. In the associated activity, students apply their scientific knowledge to model and measure the effects of green roofs.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Efficient HVAC Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course you will start by identifying the different steps a HVAC (Heating, Ventilation and Air Conditioning) engineers need to follow to come to a proper design while collaborating with the architect.

You will then learn how to distribute heat and cold using air and water systems, what temperature levels to use in both and how that relates to the type of energy supply and to the thermal quality of the building construction. You will further deepen your knowledge on air handling units and how to humidify and dehumidify air when needed and what that does mean for the energy consumption. As ventilation systems are often responsible for local thermal discomfort, you will also discover how different distribution systems lead to different comfort experiences and different indoor air qualities and you will know which simple control techniques can be applied.

Finally you will study a modern complex system consisting of an aquifer thermal storage, heat pump, boiler, solar collector, PV-cells, air handling unit, water and air distribution systems. This will allow you to develop skills to catch the complexity of such HVAC systems and to understand the basic rules of how to control them to get the best out of them and how to use data from the Building Energy Management System to help you in this task.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Laure Itard
Date Added:
05/11/2023
Elementary Ergonomics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Elementary Ergonomics is an introduction to basic physical ergonomics theory and practice for students of other - than Industrial Design Engineering of Delft University of Technology - institutes for higher learning, such as Dutch universities, universities of EU and non-EU countries, and universities of applied sciences. The course consists of the following topics: anthropometry (1D, 2D, 3D including digital human modelling), biomechanics, and comfort.

Furthermore, the role of user involvement in the design process (evaluation of existing products and environments and of created concepts, models and prototypes) will be explained. Moreover, the meaning and representation of use cues in product design will be highlighted.

Subject:
Applied Science
Architecture and Design
Material Type:
Homework/Assignment
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
ir M.C. Dekker
Date Added:
02/26/2016
Elevated Rehabilitation Facility Functions Flawlessly Through Hurricane Sandy
Unrestricted Use
Public Domain
Rating
0.0 stars

During Hurricane Sandy, as the storm surge incapacitated buildings all along the New York and New Jersey coasts, Seagate Seagate Rehabilitation & Nursing Center functioned precisely as planned. At the peak of the storm, floodwaters filled the parking area and reached the lobby door, but did not enter the building. Emergency power generators remained safe and supplied backup power for four days despite an area-wide power outage. The nursing home’s emergency plans for food and medical supplies enabled staff and patients to shelter in place despite limited transportation for incoming supplies. Seagate not only provided continuous care to its residents during and after Sandy, it also assisted local community members seeking food and shelter.

Subject:
Applied Science
Architecture and Design
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/09/2016
Energy Demand in Buildings
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Building design strongly influences the quantity of heating, cooling and electricity needed during building operation. Therefore, a correct thermal design is essential to achieve low energy and low carbon buildings, with good indoor air quality.

This course will enable you to understand the basic principles of the energy chain: demand, supply and distribution; and how they relate to design principles for sustainable and energy-efficient buildings.

Second, you will discover what type of heat losses and gains take place in buildings’ operations. You will learn how to estimate these flows using simple meteorological data and construction properties. You will acquire knowledge on how to estimate heat transfer through construction, ventilation, solar radiation or caused by internal sources or heat storage in the construction.

Third, you will learn to make estimates of buildings’ energy needs on an hourly basis by using simple static energy balances: how much energy comes in and out and which air temperature is needed? When is there heating or cooling? How much electricity is needed?

Fourth, you will discover how to extend your estimates to yearly energy demand, which is essential to make sure that a building is energy efficient and to estimate energy savings and energy costs. You will then also be able to determine the size of the needed heating and cooling equipment (which determines the costs of equipment).

Finally, you will learn how to optimize building design and will be able to find out the optimal window size or the optimum insulation thickness for your building. You will know why putting windows on the south façade is not always energy-efficient. You will understand the thermal interactions between building components and be able to make informed decisions on how to increase the energy efficiency of new and existing buildings.

This course is part of the PCP Buildings as Sustainable Energy Systems. In the other courses in this program you can learn how to choose low carbon energy supply, how to create a comfortable indoor environment, and how to control and optimize HVAC systems.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Laure Itard
P. van den Brom
Date Added:
05/11/2023
Energy-Efficient Housing
Read the Fine Print
Educational Use
Rating
0.0 stars

We all know that it takes energy to provide us with the basics of shelter: heating, cooling, lighting, electricity, sanitation and cooking. To create energy-efficient housing that is practical for people to use every day requires combining many smaller systems that each perform a function well, and making smart decisions about the sources of power we use. Through five lessons on the topics of heat transfer, circuits, daylighting, electricity from renewable energy sources, and passive solar design, students learn about the science, math and engineering that go into designing energy-efficient components of smart housing that is environmentally friendly. Through numerous design/build/analyze activities, students create a solar water heater, swamp cooler, thermostat, model houses for testing, model greenhouse, and wind and water turbine prototypes. It is best if students are concurrently taking Algebra 1 in order to complete some of the worksheets.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Energy Supply Systems for Buildings
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, you will discover the supply side of buildings’ energy chain.

The first step is to consider how to convert natural resources into the energy needed by buildings: what are the options to create heat, cold and electricity? You will learn about efficiency and use this concept to estimate building’s primary energy use and carbon emissions. This concept is widely used in many national and international policies and building regulations, and is essential to counteract climate change.

You will study the performances of single heating systems like electrical heating, gas, or renewables like biomass, solar boilers and geothermal heat, followed by single cooling systems like evaporative cooling and environmental cold.

We will also examine the systems that concurrently produce heat and cold. Do you know for instance that a heat pump and a cooling machine are identical devices? You will learn about the basic working principles of heat pumps and how to make sure they achieve high performance levels. After this course you will know how an Aquifer Thermal Storage makes smart use of the ground to deliver cold in summer and heat in winter.

Diverse electricity generation methods using turbines (wind, hydro), photovoltaics or hydrogen fuel cells will also be examined. You will learn how cogeneration of heat and power works and why this is important for the rational use of energy resources. You will also know why heat pumps are often combined with boilers or to which extent it is worth to invest in batteries for your solar panels.

By the end of the course you will be able to decide on how to combine energy conversion systems at building level in order to match buildings’ energy demand while keeping costs acceptable, using a minimum of natural resources and producing a minimum of carbon emissions.

This course is part of the program Buildings as Sustainable Energy Systems. In the other courses in this program you can learn how to design buildings with low energy demand, how to create a comfortable indoor environment, and how to control and optimize HVAC systems.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Laure Itard
Date Added:
05/11/2023
Energízate Equipo STEM
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Energízate Equipo STEM. El Centro de Extensión y Educación en Ciencias Naturales colabora con la facultad de CSU, los Parques Nacionales y los programas de ciencia ciudadana para traducir su investigación científica actual en experiencias STEM únicas para los estudiantes en forma de kits educativos que se pueden prestar. Cada kit contiene casi todos los materiales necesarios (menos cosas comunes como agua y toallas de papel) para explorar algunos temas de investigación científica realmente interesantes. enviando un formulario de recogida local o un formulario de entrega disponible en el sitio web vinculado. Utilice la información de contacto en la página de descripción general del kit STEM para obtener más información. https://www.cns-eoc.colostate.edu/stem-kits/ Este kit se proporciona de forma gratuita para uso educativo.

Subject:
Agriculture and Natural Resources
Algebra
Applied Science
Architecture and Design
Career and Technical Education
Chemistry
Design
Electronic Technology
Energy Studies
Engineering
Functions
Mathematics
Measurement and Data
Numbers and Operations
Physical Science
Physics
Ratios and Proportions
Visual Arts and Design
Material Type:
Activity/Lab
Case Study
Diagram/Illustration
Educational Kit
Interactive
Lesson
Lesson Plan
Primary Source
Reading
Simulation
Student Guide
Unit of Study
Provider:
Colorado State University
Provider Set:
Natural Sciences Education & Outreach Center
Date Added:
02/24/2023
Engineering: Building with Nature
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

If you’re interested in the concept of building with nature, then this is the engineering course for you. This course explores the use of natural materials and ecological processes in achieving effective and sustainable hydraulic infrastructural designs. You will learn the Building with Nature ecosystem-based design concept and its applications in water and coastal systems. During the course, you will be presented with a range of case studies to deepen your knowledge of ecological and engineering principles.

You’ll learn from leading Dutch engineers and environmental scientists who see the Building with Nature integrated design approach as fundamental to a new generation of engineers and ecologists.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr. J.H. Slinger
prof.dr. M. Stive
Date Added:
05/11/2023
Engineering Design for Circular Economy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Products and equipment all around us are made of materials: look around you and you will see phones, computers, cars, and buildings. We face challenges in securing the supply of materials and the impact this has on the planet. Innovative product design can help us find solutions to these challenges. This course will explore new ways of designing products.

The design of products is an important aspect of a circular economy. The circular economy approach addresses material supply challenges by keeping materials in use much longer and eventually returning materials for new use. The principle is that waste must be minimized. Products will be designed to last longer. They will be easier to Reuse, Repair, and Remanufacture. The product will eventually be broken down and Recycled. This is Design for R and is the focus of this course.

Experts from leading European universities and research organizations will explain the latest strategies in product design. Current design approaches lead to waste, loss of value and loss of resources. You will learn about the innovative ways in which companies are creating value, whilst securing their supply chains, by integrating Design for R.

This course is suitable for all learners who have an interest in product design, innovative engineering, new business activity, entrepreneurship, sustainability, circular economy and everyone who thinks that the current way we do things today needs a radical rethink.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
David Peck
Dr. A. Lohrengel
Dr. E. van der Voet
Drs. Max Prumbohm
Date Added:
05/09/2023
Engineering: Simple Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Engineering a Mountain Rescue Litter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build small-sized prototypes of mountain rescue litters rescue baskets for use in hard-to-get-to places, such as mountainous terrain to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within constraints: they must be stable, lightweight, low-cost, portable and quick to assemble. Students demonstrate their designs in a timed test during which they assemble the litter and transport the rescued person (potato) over a set distance.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Engineering a Safer World
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

A new approach to safety, based on systems thinking, that is more effective, less costly, and easier to use than current techniques. Engineering has experienced a technological revolution, but the basic engineering techniques applied in safety and reliability engineering, created in a simpler, analog world, have changed very little over the years. In this groundbreaking book, Nancy Leveson proposes a new approach to safety—more suited to today's complex, sociotechnical, software-intensive world—based on modern systems thinking and systems theory. Revisiting and updating ideas pioneered by 1950s aerospace engineers in their System Safety concept, and testing her new model extensively on real-world examples, Leveson has created a new approach to safety that is more effective, less expensive, and easier to use than current techniques. Arguing that traditional models of causality are inadequate, Leveson presents a new, extended model of causation (Systems-Theoretic Accident Model and Processes, or STAMP), then shows how the new model can be used to create techniques for system safety engineering, including accident analysis, hazard analysis, system design, safety in operations, and management of safety-critical systems. She applies the new techniques to real-world events including the friendly-fire loss of a U.S. Blackhawk helicopter in the first Gulf War; the Vioxx recall; the U.S. Navy SUBSAFE program; and the bacterial contamination of a public water supply in a Canadian town. Leveson's approach is relevant even beyond safety engineering, offering techniques for “reengineering” any large sociotechnical system to improve safety and manage risk.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Reading
Provider:
MIT Press
Author:
Nancy G. Leveson
Date Added:
01/01/2012
Engineering in Sports
Read the Fine Print
Educational Use
Rating
0.0 stars

Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, students begin to think about how engineering is involved in sports. After a discussion of kinetic and potential energy, an associated hands-on activity gives students an opportunity to explore energy absorbing materials as they try to protect an egg from being crushed.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014