Students conduct an experiment to study the acceleration of a mobile Android …
Students conduct an experiment to study the acceleration of a mobile Android device. During the experiment, they run an application created with MIT's App Inventor that monitors linear acceleration in one-dimension. Students use an acceleration vs. time equation to construct an approximate velocity vs. time graph. Students will understand the relationship between the object's mass and acceleration and how that relates to the force applied to the object, which is Newton's second law of motion.
In this activity, student teams conduct a quantitative exploration of the connections …
In this activity, student teams conduct a quantitative exploration of the connections between parts of the Earth system, through examination of a time series of environmental data maps. By investigating the connections between environmental data, they see how Earth processes interact on varying time and spatial scales.This is one of six interrelated learning activities in the student activity guide associated with the GLOBE Earth System Poster, “Exploring Connections in Year 2007.” A series of assessment and extension activities are included.
In this activity, students will explore two given websites to gather information …
In this activity, students will explore two given websites to gather information on Bone Mineral Density and how it is measured. They will also learn about X-rays in general, how they work and their different uses, along with other imaging modalities. They will answer guiding questions as they explore the websites and take a short quiz after to test the knowledge they gained while reading the articles.
Students observe multiple examples of capillary action. First they observe the shape …
Students observe multiple examples of capillary action. First they observe the shape of a glass-water meniscus and explain its shape in terms of the adhesive attraction of the water to the glass. Then they study capillary tubes and observe water climbing due to capillary action in the glass tubes. Finally, students experience a real-world application of capillary action by designing and using "capillary siphons" to filter water.
Through the use of the 5E instructional model, students discover the value …
Through the use of the 5E instructional model, students discover the value of using color maps to visualize data. The activity requires students to create a color map of the ozone hole from Dobson data values derived from the Aura satellite. Students then interpret that map and compare and evaluate different color scales.
Students learn about energy, kinetic energy, potential energy, and energy transfer through …
Students learn about energy, kinetic energy, potential energy, and energy transfer through a series of three lessons and three activities. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. The associated activities give students hands-on experience with examples of potential-to-kinetic energy transfers. The activities also provide ways for students to apply the core concepts of energy through engineering practices such as building and testing prototypes to meet design criteria, planning and carrying out investigations, collecting and interpreting data, optimizing a system design, and collaborating with other research groups. The fundamental concepts presented in this unit serve as a good foundation for future lessons on energy technologies and electricity production.
This activity allows students to demonstrate their understanding of the Law of …
This activity allows students to demonstrate their understanding of the Law of Conservation of Energy in the framework of student-designed investigations.
Students are introduced to the concept of energy conversion, and how energy …
Students are introduced to the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world examples of engineered systems light bulbs and cars are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. Students' eyes are opened to the examples of energy transfer going on around them every day. Includes two simple teacher demos using a tennis ball and ball bearings. A PowerPoint(TM) presentation and quizzes are provided.
Students learn about kinetic and potential energy, including various types of potential …
Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.
Students are introduced to the definition of energy and the concepts of …
Students are introduced to the definition of energy and the concepts of kinetic energy, potential energy, and energy transfer. This lesson is a broad overview of concepts that are taught in more detail in subsequent lessons and activities in this curricular unit. A PowerPoint(TM) presentation and pre/post quizzes are provided.
Student teams explore atmospheric aerosols, dust, and fires and their impact on …
Student teams explore atmospheric aerosols, dust, and fires and their impact on the Earth's albedo using NASA Earth Observations (NEO) website. This is an extension activity in the student learning activity guide accompanying the GLOBE Earth System Poster, Exploring Connections in Year 2007. A series of six learning activities and associated assessment activities are included.
Through this lesson and its series of hands-on mini-activities, students answer the …
Through this lesson and its series of hands-on mini-activities, students answer the question: How can we investigate and measure the inside of an object or its structure if we cannot take it apart? Unlike the destructive nuclear weapon test (!), nondestructive evaluation (NDE) methods are able to accomplish this. After an introductory slide presentation, small groups rotate through five mini-activity stations: 1) applying Maxwell’s equations, 2) generating currents, 3) creating magnetic fields, 4) solving a system of equations, and 5) understanding why the finite element method (FEM) is important. Through the short experiments, students become familiar with the science and physics being used and make the mathematical connections. They explore components of NDE and see how engineers find unseen flaws and cracks in materials that make aircraft. A pre/post quiz, slide presentation and worksheet are included.
In this activity, student teams explore connections between parts of the Earth …
In this activity, student teams explore connections between parts of the Earth system, by examining a time series of environmental data maps. By examining scientific visualizations of a data pair in two time slices, they will see that the environment is the result of the interplay among many processes that take place on varying time and spatial scales. This is one of six interrelated learning activities associated with the GLOBE Earth System Poster, Exploring Connections in Year 2007, which also includes a series of assessment and extension activities. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
In this activity, student teams explore the connections between parts of the …
In this activity, student teams explore the connections between parts of the Earth system by examining a time series of environmental data maps. They observe that the environment is the result of the interplay among many processes that take place on varying time and spatial scales, by looking at different six different variables during a single month: insolation, surface temperature, cloud fraction, aerosols, precipitation and biosphere (surface vegetation). This is one of six interrelated learning activities in the student activity guide associated with the GLOBE Earth System Poster, Exploring Connections in Year 2007. A series of assessment and extension activities are included. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
In this activity, student teams explore the connections between parts of the …
In this activity, student teams explore the connections between parts of the Earth system by examining a time series of environmental data maps. Each student teams examines images for two variables and determines if there is a direct or inversely proportional relationship exhibited between them throughout the year. The variable pairs that student groups are observing include: insolation and surface temperature; cloud fraction and precipitation; aerosols and biosphere. This is one of six interrelated learning activities associated with the GLOBE Earth System Poster, "Exploring Connections in Year 2007," and includes a series of assessment and extension activities. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. …
Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots.
In this activity, student teams explore connections between parts of the Earth …
In this activity, student teams explore connections between parts of the Earth system, by examining a time series of environmental data maps. Each team examines a single variable displayed on a global data map, and identify the unit of measure, the range of values, and patterns they observe in the data. Variables include: insolation, surface temperature, precipitation, cloud fraction, aerosols, biopshere. This is one of six interrelated learning activities associated with the GLOBE Earth System Poster, "Exploring Connections in Year 2007," and includes a series of assessment and extension activities. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
Students explore the methods engineers have devised for harnessing sunlight to generate …
Students explore the methods engineers have devised for harnessing sunlight to generate power. First, they investigate heat transfer and heat storage through the construction, testing and use of a solar oven. With a lesson focused on photovoltaic cells, students learn the concepts of energy conversion, conservation of energy, current and voltage. By constructing model solar powered cars, students see these conceptual ideas manifested in modern technology. Furthermore, the solar car project provides opportunities to explore a number of other topics, such as gear ratios and simple mechanics. Both of these design and construction projects are examples of engineering design.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.