This learning video presents an introduction to the Flaws of Averages using …
This learning video presents an introduction to the Flaws of Averages using three exciting examples: the ''crossing of the river'' example, the ''cookie'' example, and the ''dance class'' example. Averages are often worthwhile representations of a set of data by a single descriptive number. The objective of this module, however, is to simply point out a few pitfalls that could arise if one is not attentive to details when calculating and interpreting averages. The essential prerequisite knowledge for this video lesson is the ability to calculate an average from a set of numbers. During this video lesson, students will learn about three flaws of averages: (1) The average is not always a good description of the actual situation, (2) The function of the average is not always the same as the average of the function, and (3) The average depends on your perspective. To convey these concepts, the students are presented with the three real world examples mentioned above.
This video lesson shows students that math can play a role in …
This video lesson shows students that math can play a role in understanding how an infectious disease spreads and how it can be controlled. During this lesson, students will see and use both deterministic and probabilistic models and will learn by doing through role-playing exercises. The primary exercises between video segments of this lesson are class-intensive simulation games in which members of the class 'infect' each other under alternative math modeling assumptions about disease progression. Also there is an occasional class discussion and local discussion with nearby classmates.
The goal of this lesson is to assist students to relate the …
The goal of this lesson is to assist students to relate the forces acting upon particular objects and the “unseen” resolution of those forces. The video begins with a story line involving Adam, who helps his father in the garden by disposing of a garbage bag of leaves—the very act that involves resolution of forces. This lesson includes embedded video clips, animations, diagrams and inquiry-based experiments where students are required to work collaboratively and answer thought-provoking questions. The experiments will involve the study of the resolution of forces on objects placed on varying planes or on platforms of different angles, using materials that are easily found. Finally, students are required to discuss and apply what they have learned to determine whether it is easier to push or to pull a luggage bag with wheels. The lesson will take about 50 minutes to complete.
This video lesson is an example of ''teaching for understanding'' in lieu …
This video lesson is an example of ''teaching for understanding'' in lieu of providing students with formulas for determining the height of a dropped (or projected) object at any time during its fall. The concept presented here of creating a chart to organize and analyze data collected in a simple experiment is broadly useful. During the classroom breaks in this video, students will enjoy timing objects in free fall and balls rolling down ramps as a way of learning how to carefully conduct experiments and analyze the results. The beauty of this lesson is the simplicity of using only the time it takes for an object dropped from a measured height to strike the ground. There are no math prerequisites for this lesson and no needed supplies, other than a blackboard and chalk. It can be completed in one 50-60-minute classroom period.
This lesson focuses on the biggest problem faced by any young programmer …
This lesson focuses on the biggest problem faced by any young programmer - i.e. the LOGIC BUILDING required while solving a particular problem. With programming, the solution to a particular problem lies in the head, but one is unable to convert it into a computer program. This is because the thought processes of a human are much faster than the sense of observation. If this thought process could be slowed down, logic to solve a programming problem could be found very easily. This lesson focuses on converting this psychological thought process in a step-by -step logic fashion that a computer program can understand. This lesson is recorded in a kitchen where the basic programming concepts are taught by giving examples from the process of making a mango milk shake. This lesson teaches the 4 following techniques: 1) Swapping two variables by swapping a glass of milk with a glass of crushed ice; 2) Finding max from an array by finding the biggest mango; 3) Sorting an array by arranging the jars; and 4) Understanding the concept of a function, parameters and return type by comparing it with the blender/juicer. The lesson targets those students who know the syntax of programming in any language (C or GWBASIC preferred), but are unable to build the logic for a program. It can be taught in a class of 45 to 50 minutes.
This lesson is also available in Mandarin Chinese.
Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, …
Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.
This video lesson has the goal of introducing students to galaxies as …
This video lesson has the goal of introducing students to galaxies as large collections of gravitationally bound stars. It explores the amount of matter needed for a star to remain bound and then brings in the idea of Dark Matter, a new kind of matter that does not interact with light. It is best if students have had some high school level mechanics, ideally Newton's laws, orbital motion and centripetal force. The teacher guide segment has a derivation of centripetal acceleration. This lesson should be mostly accessible to students with no physics background. The video portion of this lesson runs about 30 minutes, and the questions and demonstrations will give a total activity time of about an hour if the materials are all at hand and the students work quickly. However, 1 1/2 hours is a more comfortable amount of time. There are several demonstrations that can be carried out using string, ten or so balls of a few inches in diameter, a stopwatch or clock with a sweep second hand and some tape. The demonstrations are best done outside, but can also be carried out in a gymnasium or other large room. If the materials or space are not available, there are videos of the demonstrations in the module and these may be used.
This course examines representations of race, class, gender, and sexual identity in …
This course examines representations of race, class, gender, and sexual identity in the media, with a particular focus on new media and how digital technologies are transforming popular culture. We will be considering issues of authorship, spectatorship, (audience) and the ways in which various media content (film, television, print journalism, blogs, video, advertising) enables, facilitates, and challenges these social constructions in society.
The topic of this video module is genetic basis for variation among …
The topic of this video module is genetic basis for variation among humans. The main learning objective is that students will learn the genetic mechanisms that cause variation among humans (parents and children, brothers and sisters) and how to calculate the probability that two individuals will have an identical genetic makeup. This module does not require many prerequisites, only a general knowledge of DNA as the genetic material, as well as a knowledge of meiosis.
This course introduces the parallel evolution of life and the environment. Life …
This course introduces the parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course explores the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.
This BLOSSOMS lesson will help students conceptualize the enormity of geologic time …
This BLOSSOMS lesson will help students conceptualize the enormity of geologic time and learn about important events in Earth s history. Students will also learn how geologic time can help explain seemingly incomprehensible processes, like the formation of the Himalayan Mountains from a flat plain to their current height, and the evolution of a tiny group of reptiles into enormous dinosaurs. During the breaks, students will construct a geologic timeline of their own in the classroom and do simple calculations to determine how long amounts of time can lead to impressive changes in the height of the Himalayan Mountains and the size of a group of reptiles.
The Girls Who Build Cameras workshop for high school girls is a …
The Girls Who Build Cameras workshop for high school girls is a one-day, hands-on introduction to camera physics and technology (i.e. how Instagram works!) at the MIT Lincoln Laboratory Beaverworks Center. The workshop includes tearing down old dSLR cameras, building a Raspberry Pi camera, and designing Instagram filters and Photoshop tools. Participants also get to listen to keynote speakers from the camera technology industry, including Kris Clark who engineers space cameras for NASA and MIT Lincoln Laboratory, and Uyanga Tsedev who creates imaging probes to help surgeons find tumors at MIT
The Girls Who Build: Make Your Own Wearables workshop for high school …
The Girls Who Build: Make Your Own Wearables workshop for high school girls is an introduction to computer science, electrical and mechanical engineering through wearable technology. The workshop, developed by MIT Lincoln Laboratory, consists of two major hands-on projects in manufacturing and wearable electronics. These include 3D printing jewelry and laser cutting a purse, as well as programming LEDs to light up when walking. Participants learn the design process, 3D computer modeling, and machine shop tools, in addition to writing code and building a circuit.
This course provides students with a scientific foundation of anthropogenic climate change …
This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. During the course they discuss material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease. This course also examines the science behind mitigation and adaptation proposals.
Tracing the evolution of international interactions, this course examines the dimensions of …
Tracing the evolution of international interactions, this course examines the dimensions of globalization in terms of scale and scope. It is divided into three parts; together they are intended to provide theoretical, empirical, and policy perspectives on source and consequences of globalization, focusing on emergent structures and processes, and on the implications of flows of goods and services across national boundaries -- with special attention to the issue of migration, on the assumption that people matter and matter a lot. An important concern addressed pertains to the dilemmas of international policies that are shaped by the macro-level consequences of micro-level behavior. 17.411 fulfills undergraduate public policy requirement in the major and minor. Graduate students are expected to explore the subject in greater depth through reading and individual research.
This subject examines the paradoxes of contemporary globalization. Through lectures, discussions and …
This subject examines the paradoxes of contemporary globalization. Through lectures, discussions and student presentations, we will study the cultural, linguistic, social and political impact of globalization across broad international borders.
We will pay attention to the subtle interplay of history, geography, language and cultural norms that gave rise to specific ways of life. The materials for the course include fiction, nonfiction, audio pieces, maps and visual materials.
This video lesson highlights how science can be learned from daily life …
This video lesson highlights how science can be learned from daily life experiences. It emphasizes the ways in which simple laws of physics can be understood from personal observations and experiences, and in fact it demonstrates that we use these laws as if they were built into our instincts. The video also introduces Newton's laws of motion. The title, Gravity at Work, comes from a fascinating example of two laborers working at a construction site in Pakistan. In this lesson, Newtonian equations of motion are used to determine the velocities and height achieved by the projectile in a very simple and basic manner.
Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in …
Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics include: Darcy equation, flow nets, mass conservation, the aquifer flow equation, heterogeneity and anisotropy, storage properties, regional circulation, unsaturated flow, recharge, stream-aquifer interaction, well hydraulics, flow through fractured rock, numerical models, groundwater quality, contaminant transport processes, dispersion, decay, and adsorption. Includes laboratory and computer demonstrations.
This video lesson uses the technique of induction to show students how …
This video lesson uses the technique of induction to show students how to analyze a seemingly random occurrence in order to understand it through the development of a mathematical model. Using the medium of a simple game, Dr. Lodhi demonstrates how students can first apply the 'rules' to small examples of the game and then, through careful observation, can begin to see the emergence of a possible pattern. Students will learn that they can move from observing a pattern to proving that their observation is correct by the development of a mathematical model. Dr. Lodhi provides a second game for students in the Teacher Guide downloadable on this page. There are no prerequisites for this lesson and needed materials include only a blackboard and objects of two different varieties - such as plain and striped balls, apples and oranges, etc. The lesson can be completed in a 50-minute class period.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.