The simulation shows a ballistics cart. If the cart is at rest …
The simulation shows a ballistics cart. If the cart is at rest on a horizontal surface, it will shoot a ball straight up in the air, and catch the ball again. What if, as in this simulation, the cart is traveling at a constant velocity horizontally, instead? Will the ball land ahead of the cart, in the cart, or behind the cart? Note that the cart fires the ball straight up, with respect to the cart, when the middle of the cart passes the small vertical trigger on the track. Use the buttons to select the different modes (whether there is a tunnel or not, and whether to show the velocity vectors).
Create a car powered by a ballon. Activity from Weekly STEM in …
Create a car powered by a ballon. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
This activity enables students to apply concepts of 'newton's laws of motion' …
This activity enables students to apply concepts of 'newton's laws of motion' that are learned in class to a realworld situation by having them create a car powered by a deflating balloon that travels as far as possible.
This activity is a hands-on investigation that teaches students that air resitance …
This activity is a hands-on investigation that teaches students that air resitance affects how things move and that pressure from compressed air can move things.
In this structured inquiry activity students will work in groups/ teams to …
In this structured inquiry activity students will work in groups/ teams to build a balloon rocket of their own design. The rocket will race in one dimension and require that they apply their knowledge of position, time, and velocity.
Students follow the steps of the engineering design process as they design …
Students follow the steps of the engineering design process as they design and construct balloons for aerial surveillance. After their first attempts to create balloons, they are given the associated Estimating Buoyancy lesson to learn about volume, buoyancy and density to help them iterate more successful balloon designs.Applying their newfound knowledge, the young engineers build and test balloons that fly carrying small flip cameras that capture aerial images of their school. Students use the aerial footage to draw maps and estimate areas.
Experiment with a helium balloon, a hot air balloon, or a rigid …
Experiment with a helium balloon, a hot air balloon, or a rigid sphere filled with different gases. Discover what makes some balloons float and others sink.
Students explore static electricity by rubbing a simulated balloon on a sweater. …
Students explore static electricity by rubbing a simulated balloon on a sweater. As they view the charges in the sweater, balloon, and adjacent wall, they gain an understanding of charge transfer. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments.
Why does a balloon stick to your sweater? Rub a balloon on …
Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.
Crea dos botes similares con papel de aluminio, uno más grande y …
Crea dos botes similares con papel de aluminio, uno más grande y otro más pequeño. Pruebe ambos para ver cuántos centavos puede contener cada uno. Experimenta hundiéndote y flotando. Aprende sobre la gravedad, la flotabilidad y la densidad. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.
This experimental activity is designed to develop a basic understanding of the …
This experimental activity is designed to develop a basic understanding of the interrelationship between temperature and pressure and the structure of a device made to examine this relationship. Resources needed to conduct this activity include two canning jars, two large rubber balloons, a heat lamp or lamp with 150 watt bulb, and access to freezer or water and ice. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 5 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.
This trick from Exploratorium physicist Paul Doherty lets you add together the …
This trick from Exploratorium physicist Paul Doherty lets you add together the bounces of two balls and send one ball flying. When we tried this trick on the Exploratorium's exhibit floor, we gathered a crowd of visitors who wanted to know what we were doing. We explained that we were engaged in serious scientific experimentation related to energy transfer. Some of them may have believed us. If you'd like to go into the physical calculations of this phenomenam, see the related resource "Bouncing Balls" - it's the same activity but with the math explained.
CK-12 Basic Physics - Second Edition updates CK-12 Basic Physics and is …
CK-12 Basic Physics - Second Edition updates CK-12 Basic Physics and is intended to be used as one small part of a multifaceted strategy to teach physics conceptually and mathematically.
Look inside a resistor to see how it works. Increase the battery …
Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.
Look inside a battery to see how it works. Select the battery …
Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.
Look inside a battery to see how it works. Select the battery …
Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.