In class, have students make a simple sketch of an outcrop shown …
In class, have students make a simple sketch of an outcrop shown in a slide (or computer projection) then discuss possible interpretations.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are given a description of a fossil brachiopod, from the literature, …
Students are given a description of a fossil brachiopod, from the literature, along with a one-page handout describing the basic morphology of brachiopods. Students work independently to make a scale drawing of the fossil described (brachial valve, pedicle valve, anterior view, lateral view). They have access to textbooks (Moore, Laliker & Fisher; Clarkson), the Treatise volume, and the internet to get information on morphological terms. This takes about an hour, after which I display all of the diagrams on the wall along with the photographs from the paper from which the description was extracted. We discuss some of the differences and where problems arose in interpreting the description. I emphasize the importance of an accurate drawing or photograph to accompany a description.
Students are then given a different brachiopod specimen and asked to produce a written description (pedicle-valve, brachial valve, anterior view, lateral view) of their fossil similar to the one that they read--i.e. using all of the appropriate terms. They are told that other students will be trying to match their description to their specimen. I collect all of the descriptions, edit them (remove portions that use incorrect terminology or inappropriate), and produce a handout of all of the descriptions.
At the next class, students are given the descriptions and asked to match descriptions to specimens. They do this independently outside of class. The specimens are made available in the lab room for several days. I add a couple of 'extra' specimens (without description) so that it is not a process of elimination.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Analyzing three-dimensional orientation data using a stereonet is an important component of …
Analyzing three-dimensional orientation data using a stereonet is an important component of any structural geology course, ideally helping students to visualize structural geometry and serving as a springboard for more advanced topics such as fault and fold kinematics. Rather than teaching my students about stereonets using tracing paper and pushpins, I use the newest version of Rick Allmendinger and N��stor Cardozo's OSXStereonet program, which includes elegant, interactive three-dimensional view options. Simultaneously, I teach students transformation of orientation data between spherical coordinates and Cartesian coordinates, using MATLAB functions to carry out the conversions. We simultaneously solve problems involving orientation data using OSXStereonet and MATLAB, allowing students to gain an understanding of the mathematics that OSXStereonet carries out behind the scenes while using the visualization capabilities of OSXStereonet to reinforce the three-dimensional concepts.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will design the integration of renewable or carbon neutral energy sources …
Students will design the integration of renewable or carbon neutral energy sources into the electricity generation mix of an example utility. The structure is a budget or a design or maybe even a puzzle where all the pieces of electricity generation must add up to demand and simultaneously comply with state and federal emissions regulations and renewable energy targets. The puzzle is similar in style to Princeton's well-known "Stabilization Wedges" activity [see Ref. 1]. Enough of the complications are present that students will experience why the switch from coal is so slow and how dynamic the economic and policy environment is. This module can be a one-week capstone of a full course on energy, policy, and sustainability or a two-week focus unit within a broader course if wind, solar, transmission, and storage are intermixed because they were not already covered separately.
The Smith College Sedimentology course is an example of a course structured …
The Smith College Sedimentology course is an example of a course structured around projects, most of which are field based. The projects are carefully designed to take advantage of the local geology and to address a variety of topics. Of utmost importance in designing individual projects is demonstrating the relevance of the work the students do. Therefore the projects are designed to mimic real-life situations: for example, the students address concerns of a local farmer, or have roles as field conference organizers and collaborators (with paleontologists) on a multidisciplinary research project.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this Physical Geography Lab, students are responsible for designing a simple …
In this Physical Geography Lab, students are responsible for designing a simple biological community.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Related Links Supplement for this course Field-based research projects are the focal …
Related Links
Supplement for this course
Field-based research projects are the focal point for my course in sedimentary geology. For each offering of the course, projects are selected which will enable students to engage in authentic research and learn fundamental principles of sedimentary geology at the same time. Projects have addressed problems as diverse as sedimentologic processes, paleoenvironmental interpretation, stratigraphic correlation between outcrops and the nature of contacts between units. Each semester, the specific content of the course, how the content is organized, which readings are chosen and selection of laboratory experiences are dictated by the nature of the specific project and are planned to support students in their work on the project. Less content may be "covered" with this approach and topics may not follow a "traditional" order (see syllabus), but students' depth of understanding, skills in scientific reasoning, sense of accomplishment, and growth in confidence are greatly enhanced. Class projects from half of the past four offerings of the course culminated in the presentation of three posters at regional GSA conferences. Results of the other two semesters were not submitted for presentation because the instructor failed to identify problems of adequate significance for the class to investigate. However, these projects did yield data which may be useful in future projects.
Field projects must be chosen carefully so that they a) have the potential to yield results of scientific significance, and b) can be completed within the time-frame of one semester. In addition, it is essential to provide students with experiences that enable them to develop the expertise necessary to gather and make sense of the data. To ensure these conditions, the faculty member should be involved actively as a collaborator in the project. Therefore it is mutually beneficial if the class project is related to the faculty member's research or to a topic of interest to him/her. Guidelines for the development of successful projects are available in the Instructor's Notes file.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Dr. Thomas Hickson (University of St. Thomas) and Karen Campbell (National Center …
Dr. Thomas Hickson (University of St. Thomas) and Karen Campbell (National Center for Earth Surface Dynamics) developed a small, two-dimensional deltaic sedimentation model for the Teaching Sedimentary Geology workshop. This page provides a complete exercise and construction plans to build your own desktop delta.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Pre-service Midle School teachers devised an experiment to test an assertion that …
Pre-service Midle School teachers devised an experiment to test an assertion that destruction of the Brazilian Rainforest would lead to a serious drop in atmospheric oxygen. The experiment proved to be a failure, but opened other avenues of science learning and had a positive impact on their confidence in teaching inquiry-based science.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust …
Research-grade Global Positioning Systems (GPS) allow students to deduce that Earth's crust is changing shape in measurable ways. From data gathered by EarthScope's Plate Boundary Observatory, students discover that the Pacific Northwest of the United States and coastal British Columbia -- the Cascadia region - are geologically active: tectonic plates move and collide; they shift and buckle; continental crust deforms; regions warp; rocks crumple, bend, and will break.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This lab is the continuation of the lab manual - calculating temperature, …
This lab is the continuation of the lab manual - calculating temperature, helps students to locate groundwater discharges by interpreting thermal anomalies and identifying their geologic controls on land. There are known locations of submarine springs in the study area (http://www.dep.state.fl.us/).
This activity involves using XRD to determine the chemical composition, state of …
This activity involves using XRD to determine the chemical composition, state of order, molar volume, and density of a monoclinic alkali feldspar.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a three-week lab sequence aimed at determining the approximate amount …
This is a three-week lab sequence aimed at determining the approximate amount of carbon stored in a local bog and teaching skills for solving complex problems through collaborative work.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
A homework/classroom activity where students collect historical earthquake information and use it …
A homework/classroom activity where students collect historical earthquake information and use it to forecast the probability of larger earthquakes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Trench logs of the San Andreas Fault at Pallett Creek, CA are …
Trench logs of the San Andreas Fault at Pallett Creek, CA are the data base for a lab or homework assignment that teaches about relative dating, radiometric dating, fault recurrence intervals and the reasons for uncertainty in predicting geologic phenomena. Students are given a trench log that includes several fault strands and dated stratigraphic horizons. They estimate the times of faulting based on bracketing ages of faulted and unfaulted strata. They compile a table with the faulting events from the trench log and additional events recognized in nearby trenches, then calculate maximum, minimum and average earthquake recurrence intervals for the San Andreas Fault in this area. They conclude by making their own prediction for the timing of the next earthquake. While basically an exercise in determining relative ages of geologic horizons and events, this assignment includes radiometric dates, recurrence intervals, and an obvious societal significance that has been well received by students. With minor modifications, this exercise has been used successfully with elementary school students through university undergraduate geology majors. Less experienced students can work in groups, with each group determining the age of a single fault strand; combining the results from different groups and calculating recurrence intervals can then be done as a class activity. University students in an introductory geology course for non-majors can add their data from the trench log to an existing table with other faulting events already provided. The exercise can be made more challenging for advanced students by using logs from several different trenches, requiring students to design the table themselves, and giving students the uncertainties for the radiometric dates rather than simple ages for the strata. Most students -- at all levels -- are initially frustrated by their inability to determine an exact date of faulting from the available data. They gain a new appreciation for the task of the geoscientist who attempts to relate geologic phenomena to the human, rather than geologic, time scale.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students determine the energy efficiency of different methods of heating substances in …
Students determine the energy efficiency of different methods of heating substances in the lab and then assess the economic and environmental costs.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is divided into two parts - 1) Using data from …
This activity is divided into two parts - 1) Using data from primary literature to calculate mantle potential temperature beneath a ridge and an oceanic island ("hotspot"). 2) Using the transition zone thickness observed beneath a "hotspot" (Hawaii) to analyze contributions from anomalous temperature and composition. In addition to the student activity sheets, an Excel key, instructor notes, and student handouts are included below.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity uses Google Earth to explore the distribution of plate boundaries …
This activity uses Google Earth to explore the distribution of plate boundaries and hotspot volcanoes on Earth. It uses the ages and locations of the hotspot volcanoes to determine the direction and rate of plate motion.
This activity is intended to extend students' learning of fundamental physics concepts …
This activity is intended to extend students' learning of fundamental physics concepts (e.g. reflection, refraction and transmission of energy) through a real-world application.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.