This is a comprehensive science textbook for Grade 12. You can download …
This is a comprehensive science textbook for Grade 12. You can download or read it on-line on your mobile phone, computer or iPad. Every chapter comes with video lessons and explanations which help bring the ideas and concepts to life. Summary presentations at the end of every chapter offer an overview of the content covered, with key points highlighted for easy revision. Topics covered are: organic molecules, organic chemistry, organic macromolecules, polymers, reaction rates, electrochemical reactions, the chemical industry, motion in two dimensions, mechanical properties of matter, work, energy and power, doppler effect, colour, 2D and 3D wavefronts, wave nature of matter, electrodynamics, electronics, electromagnetic radiation, optical phenomena and properties of matter, light, photoelectric effect, lasers. This book is based upon the original Free High School Science Text series.
"Focus on 'Henry V'" is a peer-reviewed, multimedia, digital Open Educational Resource …
"Focus on 'Henry V'" is a peer-reviewed, multimedia, digital Open Educational Resource co-authored and co-produced by faculty, graduate students, and undergraduates on the innovative digital publishing platform Scalar. Chapters include guides to early printed editions, sources, and performance and cinematic histories of the play, as well as teaching resources and in-depth case-studies of particular scenes. All chapters include rich multimedia and audio recordings of body text and image captions. In addition to a traditional Table of Contents, the digital book allows users to navigate the materials through multiple pathways and visualizations. In this way the book offers not only a cutting-edge, renewable OER for college and K-12 teachers but also a model for maximizing the affordances of the digital medium.
Students learn the basic principles of filtering as well as how to …
Students learn the basic principles of filtering as well as how to apply digital filters to extract part of an audio signal by using an interactive online demo website. They apply this knowledge in order to isolate a voice recording from a heavily noise-contaminated sound wave. After completing the associated lesson, expect students to be able to attempt (and many successfully finish) this activity with minimal help from the instructor.
Students' understanding of how robotic light sensors work is reinforced in a …
Students' understanding of how robotic light sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and light sensors. Working in pairs, students program LEGO robots to follow a flashlight as its light beam moves around. Students practice and learn programming skills and logic design in parallel. They see how robots take input from light sensors and use it to make decisions to move, similar to the human sense of sight. Students also see how they perform the steps of the engineering design process in the course of designing and testing to achieve a successful program. A PowerPoint® presentation and pre/post quizzes are provided.
This website consists of a series of 3D simulations on engineering technology …
This website consists of a series of 3D simulations on engineering technology topics. Developed by and for the Eastern Iowa Community Colleges' Engineering Technology programs, these simulations, which are approximately 2-9 minutes long, are used as part of their curriculum to help students quickly and thoroughly grasp the concepts being presented in a visual format. Some simulations are paired with additional interactive quiz questions and can be downloaded as .zip files. Topics covered include: AC Circuits, DC Circuits, Digital Currents & Systems, Electrical Motor Control, Fluid Power Control, Fluid Power Design & Application, Fluid Power Fundamentals, Industrial Print Reading (Engineering Design), Industrial Robotics, Lean Manufacturing, Microcontrollers, Motion Control, Process Control, Programmable Logic Controllers, and Solid Stats & Systems. This workforce solution is funded by the Pathways to Engineering Technology Careers grant which is 100% financed through a $2.5 million grant from the U.S. Department of Labor’s Employment & Training Administration.
Students are given a history of electricity and its development into the …
Students are given a history of electricity and its development into the modern age lifeline upon which we so depend. The methods of power generation are introduced, and further discussion of each technology's pros and cons follows.
Students are introduced to the idea of electrical energy. They learn about …
Students are introduced to the idea of electrical energy. They learn about the relationships between charge, voltage, current and resistance. They discover that electrical energy is the form of energy that powers most of their household appliances and toys. In the associated activities, students learn how a circuit works and test materials to see if they conduct electricity. Building upon a general understanding of electrical energy, they design their own potato power experiment. In two literacy activities, students learn about the electrical power grid and blackouts.
Get Energized! STEM Kit. The Natural Sciences Education & Outreach Center collaborates …
Get Energized! STEM Kit. The Natural Sciences Education & Outreach Center collaborates with CSU faculty, National Parks and citizen science programs to translate their current scientific research into unique STEM experiences for students in the form of Educational Kits that can be checked out. Each kit contains just about all of the materials needed (minus common things like water and paper towels) to explore some really interesting scientific research topics.The kits are available for teachers and informal educators in Colorado to check out for a duration of a week by submitting either a local pickup form or a delivery form available at the linked website. This kit is provided free for educational use. This Kit is available in Spanish.
Students gain an understanding of the difference between electrical conductors and insulators, …
Students gain an understanding of the difference between electrical conductors and insulators, and experience recognizing a conductor by its material properties. In a hands-on activity, students build a conductivity tester to determine whether different objects are conductors or insulators. In another activity, students use their understanding of electrical properties to choose appropriate materials to design and build their own basic circuit switch.
Students engage in the second design challenge of the unit, which is …
Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Gears are a very important part of any machine, particularly when it has a power source such as engine or motor. Specifically, students learn how to design the gear train from the LEGO MINDSTORMS(TM) NXT servomotor to the wheel to make the LEGO taskbot go faster or slower. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.
High Tech Rocks! STEM Kit. The Natural Sciences Education & Outreach Center …
High Tech Rocks! STEM Kit. The Natural Sciences Education & Outreach Center collaborates with CSU faculty, National Parks and citizen science programs to translate their current scientific research into unique STEM experiences for students in the form of Educational Kits that can be checked out. Each kit contains just about all of the materials needed (minus common things like water and paper towels) to explore some really interesting scientific research topics.The kits are available for teachers and informal educators in Colorado to check out for a duration of a week by submitting either a local pickup form or a delivery form available at the linked website. This kit is provided free for educational use. This Kit is available in Spanish.
Students examine how the power output of a photovoltaic (PV) solar panel …
Students examine how the power output of a photovoltaic (PV) solar panel is affected by temperature changes. Using a 100-watt lamp and a small PV panel connected to a digital multimeter, teams vary the temperature of the panel and record the resulting voltage output. They plot the panel's power output and calculate the panel's temperature coefficient.
Students explore the basics of DC circuits, analyzing the light from light …
Students explore the basics of DC circuits, analyzing the light from light bulbs when connected in series and parallel circuits. Ohm's law and the equation for power dissipated by a circuit are the two primary equations used to explore circuits connected in series and parallel. Students measure and see the effect of power dissipation from the light bulbs. Kirchhoff's voltage law is used to show how two resistor elements add in series, while Kirchhoff's current law is used to explain how two resistor elements add when in parallel. Students also learn how electrical engineers apply this knowledge to solve problems. Power dissipation is particularly important with the introduction of LED bulbs and claims of energy efficiency, and understanding how power dissipation is calculated helps when evaluating these types of claims. This activity is designed to introduce students to the concepts needed to understand how circuits can be reduced algebraically.
The advent of electronics has had a profound impact on our lives …
The advent of electronics has had a profound impact on our lives and impacted nearly every product that we use either directly or indirectly. Without electronics, present day computers, cell phones, stereos, televisions, and the internet would not be possible. And of course, without computers and modern communications tools, society could not have made the huge strides in fields such as medicine, aerospace technologies, meteorology, transportation, agriculture, education, and many others. It is for these reasons that the invention of the transistor is considered as one of the most important technological advancements in history.
This course introduces students to the fundamental concepts of physical computing systems …
This course introduces students to the fundamental concepts of physical computing systems through hands-on, real-life applications. Physical computing forms the basis of smart devices, wearables like smart watches, e-textiles / fashion, IoT (Internet of Things) devices, and hardware start-up
This course teaches students to design electronic devices that interact with the physical world by building circuits and developing software algorithms that run on a microcontroller. These devices will also be connected to the internet so they can send sensor data to dashboards and be remotely operated from a computer or mobile device.
This course is designed specifically for university undergraduate students from all majors. It presumes no in-depth knowledge of physics or math nor prior experience with electronics. The only expected prerequisite knowledge is introductory experience with procedural programming (i.e. variables, functions, loops).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.