This lesson introduces students to myths about the auroras in different cultures. …
This lesson introduces students to myths about the auroras in different cultures. The class will read a story relating to legends of the aurora and share their reactions to the story. The teacher must select and obtain one or more books from a list provided. For homework, students will create their own myth regarding the aurora. This is lesson two of a collection of five activities that can be used individually or as a sequence; concludes with a KWL (Know/Want-to-know/Learned) assessment activity.
Mójate Educación Acuática Equipo STEM (Se require entrenamiento especial). El Centro de …
Mójate Educación Acuática Equipo STEM (Se require entrenamiento especial). El Centro de Extensión y Educación en Ciencias Naturales colabora con la facultad de CSU, los Parques Nacionales y los programas de ciencia ciudadana para traducir su investigación científica actual en experiencias STEM únicas para los estudiantes en forma de kits educativos que se pueden prestar. Cada kit contiene casi todos los materiales necesarios (menos cosas comunes como agua y toallas de papel) para explorar algunos temas de investigación científica realmente interesantes. enviando un formulario de recogida local o un formulario de entrega disponible en el sitio web vinculado. Nota: El acceso a este recurso requiere capacitación adicional del educador. Utilice la información de contacto en la página de descripción general del kit STEM para obtener más información. https://www.cns-eoc.colostate.edu/stem-kits/ Este kit se proporciona de forma gratuita para uso educativo.
This is a extensive collection of maps, data, and tools that students …
This is a extensive collection of maps, data, and tools that students can use to research drought and its impacts on agriculture, wildfires, water supply, vegetation, soil moisture, temperature and precipitation.
In this set of activities, high school students model changes in climate …
In this set of activities, high school students model changes in climate and their effects on international relations, investigate local climate impacts and solutions and observe global climate patterns and adaptations. Lessons may be standalone or done in series.
In this short video from ClimateCentral, host Jessica Harrop explains what evidence …
In this short video from ClimateCentral, host Jessica Harrop explains what evidence scientists have for claiming that recent global warming is caused by humans and is not just part of a natural cycle.
Students are introduced to natural disasters, and learn the difference between natural …
Students are introduced to natural disasters, and learn the difference between natural hazards and natural disasters. They discover the many types of natural hazards avalanche, earthquake, flood, forest fire, hurricane, landslide, thunderstorm, tornado, tsunami and volcano as well as specific examples of natural disasters. Students also explore why understanding these natural events is important to engineers and everyone's survival on our planet.
In this video segment, adapted from Navajo Technical College, two Navajo Elders …
In this video segment, adapted from Navajo Technical College, two Navajo Elders speak about climate change and differences in the environment that they have observed.
This lab exercise is designed to provide a basic understanding of a …
This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuels. Students analyze and visualize data to investigate this air pollution and climate change problem, determine the season in which it commonly occurs, and communicate the results.
In this activity, students explore factors that have caused the rise in …
In this activity, students explore factors that have caused the rise in global temperature over the last century. Educators have the opportunity to assess how modeling activities (the game), analogies (the cake), and mathematical models (graphs) develop and change student mental models.
In this activity, students view a satellite image of Earth at night, …
In this activity, students view a satellite image of Earth at night, and consider the environmental considerations and consequences associated with the pattern of light they see. The resource includes a map for student use. Summary background information, data and images supporting the activity are available on the Earth Update data site. To complete the activity, students will need to access the Space Update multimedia collection, which is available for download and purchase for use in the classroom.
Students explore the causes and effects of the Earth's ozone holes through …
Students explore the causes and effects of the Earth's ozone holes through discussion and an interactive simulation. In an associated literacy activity, students learn how to tell a story in order to make a complex topic (such as global warming or ozone holes) easier for a reader to grasp.
In this curriculum module, students in high school life science, marine science, …
In this curriculum module, students in high school life science, marine science, and/or chemistry courses act as interdisciplinary scientists and delegates to investigate how the changing carbon cycle will affect the oceans along with their integral populations.
The oceans cover 70 percent of the planet and play a critical role in regulating atmospheric carbon dioxide through the interaction of physical, chemical, and biological processes. As a result of anthropogenic activity, a doubling of the atmospheric CO2 concentration (to 760 ppm) is expected to occur by the end of this century. A quarter of the total CO2 emitted has already been absorbed by the surface oceans, changing the marine carbonate system, resulting in a decrease in pH, a change in carbonate-ion concentrations, and a change in the speciation of macro and micronutrients. The shift in the carbonate system is already drastically affecting biological processes in the oceans and is predicted to have major consequences on carbon export to the deep ocean with reverberating effects on atmospheric CO2. Put in simple terms, ocean acidification is a complex phenomenon with complex consequences. Understanding complexity and the impact of ocean acidification requires systems thinking – both in research and in education. Scientific advancement will help us better understand the problem and devise more effective solutions, but executing these solutions will require widespread public participation to mitigate this global problem.
Through these lessons, students closely model what is occurring in laboratories worldwide and at Institute for Systems Biology (ISB) through Monica Orellana’s research to analyze the effect CO2 has on ocean chemistry, ecosystems and human societies. Students experiment, analyze public data, and prepare for a mock summit to address concerns. Student groups represent key “interest groups” and design two experiments to observe the effects of CO2 on seawater pH, diatom growth, algal blooms, nutrient availability, and/or shell dissolution.
This model of ocean-atmosphere interaction shows how carbon dioxide gas diffuses into …
This model of ocean-atmosphere interaction shows how carbon dioxide gas diffuses into water, causing the water to become more acidic. The video demonstration and instruction provide an explanation of the chemistry behind this change and the consequences of ocean acidification. The video also addresses a misconception about how ocean acidification affects shelled organisms.
In this classroom activity, students access sea surface temperature and wind speed …
In this classroom activity, students access sea surface temperature and wind speed data from a NASA site, plot and compare data, draw conclusions about surface current and sea surface temperature, and link their gained understanding to concerns about global climate change.
This interactive tool allows students to gather data using My NASA Data …
This interactive tool allows students to gather data using My NASA Data microsets to investigate how differential heating of Earth results in circulation patterns in the oceans and the atmosphere that globally distribute the heat. They examine the relationship between the rotation of Earth and the circular motions of ocean currents and air. Students also make predictions based on the data to concerns about global climate change. They begin by examining the temperature of oceans surface currents and ocean surface winds. These currents, driven by the wind, mark the movement of surface heating as monitored by satellites. Students explore the link between 1) ocean temperatures and currents, 2) uneven heating and rotation of Earth, 3) resulting climate and weather patterns, and 4) projected impacts of climate change (global warming). Using the Live Access Server, students can select data sets for various elements for different regions of the globe, at different times of the year, and for multiple years. The information is provided in maps or graphs which can be saved for future reference. Some of the data sets accessed for this lesson include Sea Surface Temperature, Cloud Coverage, and Sea Level Height for this lesson. The lesson provides directions for accessing the data as well as questions to guide discussion and learning. The estimated time for completing the activity is 50 minutes. Inclusion of the Extension activities could broaden the scope of the lesson to several days in length. Links to informative maps and text such as the deep ocean conveyor belt, upwelling, and coastal fog as needed to answer questions in the extension activities are included.
This lesson explores El Niño by looking at sea surface temperature, sea …
This lesson explores El Niño by looking at sea surface temperature, sea surface height, and wind vectors in order to seek out any correlations there may be among these three variables using the My NASA Data Live Access Server. The lesson guides the students through data representing the strong El Niño from 1997 to 1998. In this way, students will model the methods of researchers who bring their expertise to study integrated science questions.
In this activity, students are presented with a satellite image of ocean …
In this activity, students are presented with a satellite image of ocean temperature, and examine the map to determine whether ocean temperature is influenced by latitude. Students graph each temperature value as a function of latitude and write a linear equation that best fits the points on their graph. A student worksheet is provided. Summary background information, data and images supporting the activity are available on the Earth Update data site. To complete the activity, students will need to access the Space Update multimedia collection, which is available for download and purchase for use in the classroom.
This page is part of NASA's Earth Observatory website. It features text …
This page is part of NASA's Earth Observatory website. It features text and a scientific illustration to describe how the ocean interacts with the atmosphere, physically exchanging heat, water, and momentum. It also includes links to related data sets, other ocean fact sheets, and relevant satellite missions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.