Updating search results...

Search Resources

401 Results

View
Selected filters:
  • Hydrology
Using Data From the Arsenic Problem in Bangladesh
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module looks at the feasibility of using deeper wells as a source of low As water. The data sets are described in detail by van Geen et al. (van Geen et al., 2003; van Geen et al., 2002).

Students are being introduced to background information about the Arsenic problem in Bangladesh in lecture format. This includes health aspects and the history of the issue. They also have been using the sand tank groundwater model distributed by the University of Wisconsin Stevens Point (https://www.uwsp.edu/cnr-ap/watershed/Pages/GroundwaterModelWorkshop.aspx) to develop an intuitive understanding of groundwater flow and transport and are familiar with basic hydrogeological concepts. They inject a dye into the shallow aquifer of the model and study how pumping effects the migration of the Arsenic plume (Fig 1).

Students get an Excel spreadsheet that contains the longitude, latitude, and depth of 6000 wells and a satellite image that shows the area of investigation. They use Arc GIS software to plot data on the satellite image (Fig. 2), or alternatively plot the data as a function of longitude and latitude as a bubble plot in Excel. They find that the distribution of As in many regions is very heterogeneous. They then select sub-regions and look at the depth distribution and find that often there is a gap in the depth population of wells which turns out to be due to a clay layer varying in thickness that separates the shallow aquifer from the deep aquifer. The depth distribution (Fig. 3) of As also shows a characteristic pattern with most of the elevated As concentrated in the top 30 meters.
Students then discuss remediation options, in particular the possibility of switching to neighboring wells and using deeper groundwater as an alternative source of drinking water. They find that in many regions there are safe wells within a few hundred m of the high As well. However, it is not clear how long these wells will remain low in dissolved As and there are social barriers as well to use the neighbors well. They then determine a depth below which As concentrations are low in their region and elevate the risk of using deeper groundwater for drinking water and irrigation. They find that personal use is resulting in only ~1cm year-1 of water use, while irrigation (~1 m year-1) would considerably lower the water table and potentially could contaminate the deeper aquifer as well. The conclusion is that if deeper groundwater is utilized its use should be limited to personal use.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Business and Communication
Chemistry
Earth and Space Science
Hydrology
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/04/2019
Using Demonstration Storms to Prepare for Extreme Rainfall
Unrestricted Use
Public Domain
Rating
0.0 stars

An extreme precipitation event in 2008 cost one town more than a million dollars in infrastructure repairs. Now, other municipalities can simulate how their homes, businesses, and facilities might fare if they experienced a similar event.

Subject:
Earth and Space Science
Hydrology
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/29/2016
Using Excel for Aquifer Test
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This exercise is part of a sequence of exercises to help students understand single and multiple aquifer tests. In class, students will receive data from pumping tests at University of Minnesota's hydrogeology field site. Instead of using commercial software, students will create interactive modeling tools to facilitate curve matching and to collaborate on understanding aquifer tests at different scales using different methods. The approaches used in this exercise can be extended to develop models to compare single and multiple aquifer tests using different approaches.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/19/2020
Using Excel to plot numerical and analytical forms of the diffusion equation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This computer-based assignment forces students to compare and contrast integral and differential forms of the conservation of mass equation, as well as analytical and numerical approaches to solution. Students are given a text description of a simple environmental problem (a conservative tracer diffusing in a one-dimensional system with no-flux boundaries) and are then required to first write equations that describe the system and then implement these equations in an Excel spreadsheet or Matlab m-file. Students then use their spreadsheets/m-files to compare different solution methods and must communicate these results in short text answers.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
02/24/2022
Using GIS to Construct Water Table Maps and Flow Nets
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This exercise is done in a computer lab using ESRI ArcMap software with both the Spatial Analyst and 3D Analyst extensions. Students are given a copy of the Lakeside Nebraska 15 minute topographic map and a shapefile containing all the lake elevation data. They are given instructions on how to rasterize the point data to create a contour map of the water table surface and are then shown how to create flow lines. Their task is to create a flow net that they will use to determine areas of groundwater recharge and discharge. They will then generate hypotheses to explain what controls the groundwater flow system in this area.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/10/2019
Using GIS to estimate the volume of snow and water in a drainage basin
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity uses field measurements and GIS to estimate the volume of water in the form of snow in a field site.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/17/2020
Using Inquiry to Discover Stream Formations In a Small Stream
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an inquiry based field investigation where students measure and map a small stream and then develop an understanding of the formation of a variety of small stream features.

Subject:
Earth and Space Science
Hydrology
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
04/12/2023
Using NASA Earth-Observing Satellites to Help Improve Agriculture and Water Usage
Read the Fine Print
Educational Use
Rating
0.0 stars

In this resource, students learn about freshwater resources, how NASA uses satellites to measure precipitation, and how that data can be used in agricultural practices. Students use data from the NASA Global Precipitation Measurement satellite to explore precipitation patterns in two parts of the world and then make recommendations for how to reduce water use in agriculture and in their own lives.

Subject:
Agriculture
Agriculture and Natural Resources
Applied Science
Earth and Space Science
Environmental Science
Environmental Studies
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Japan Aerospace Exploration Agency
National Aeronautics and Space Administration
Date Added:
07/14/2022
Using Visual MODFLOW to Simulate Groundwater Flow and Transport
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students are trained to use the Visual MODFLOW computer program (Waterloo Hydrogeologic, Inc.) and they learn first-hand how to apply the Dupuit Approximation to groundwater flow and transport problems in unconfined aquifers. The students apply the Dupuit Approximation (Fetter, 2001) to a case study developed from Anderson and Woessner (1992) in which they are given system dimensions, aquifer properties, and well water levels. Learning objectives include (1) prediction of groundwater flow and transport and (2) model calibration (e.g., getting the model output to match well water level data). Students also learn how to solve the equations using a computer spreadsheet program, further expanding their ability to understand and work with the equations.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Material Type:
Activity/Lab
Case Study
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/10/2020
Using Wetlands to Teach Hydrogeology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Wetlands provide an ideal field hydrology laboratory because the water table is so close to the land surface. Eight field exercises, in which students generate their own data, are presented that demonstrate surface-water, vadose-zone, and groundwater hydrology concepts. Standard field equipment and methods are used to conduct investigations including measuring stream discharge, estimating groundwater seepage to a stream and/or pond, preparing a topographic profile showing the water-table configuration, measuring infiltration rates and estimating constant infiltration capacity, measuring field-saturated hydraulic conductivity, estimating hydraulic conductivity from slug tests, and determining the direction, hydraulic gradient, and specific discharge of groundwater. These labs compliment lecture material commonly covered in a first semester hydrology course.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Hydrology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/27/2020
Using spring water chemistry to understand groundwater inputs
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The assignment will begin with teaching proper water collection and use of equipment for hydrochemical field work. Once the class is familiar with sample collecting technques, the class takes a field trip to several springs within the Madera Limestone, Sandia Mountains New Mexico. Collecting waters and obtaining hydrochemical field parameters for each spring location as well as collecting groundwater from one well in the same aquifer. Returning to the lab and preparing and running samples for ion analysis.

Spring waters will then be compared to well water and average precipitation data available from the USGS. Geochemical modeling will then be completed to understand the proportion of aquifer, precipitation and possible deeply sourced waters found in the spring waters.

The outcomes include 1) teaching proper sampling techniques 2) proper preparation of samples for ion analysis 3) Geochemical modeling to understand mixing

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Chemistry
Earth and Space Science
Environmental Studies
Hydrology
Physical Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/06/2019
Using the EXCEL Woburn Flow and Transport Model to Teach Modeling Concepts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

To prepare for this project / assignment, students could view the 'A Civil Action' movie, the instructor could read to them excerpts from the book and/or the trial testimony, and show them images from Woburn, wells G and H, the subsurface geologic materials, geologic cross sections, the trial participants, and the federal courtroom in Boston (see below). The materials in Bair (2001) about scientists in the courtroom, specific (excerpted) testimony presented by the three expert witnesses in the 'A Civil Action' trial, a chart summarizing the differences in their testimony, and the views of a federal judge on the goal of science versus the goal of a civil trial may also be worthwhile reading by the class prior to the assignment.

The instructor could show students the large plates included in the USGS report by Myette and others (1987) that display potentiometric data and contours before and after the critically important aquifer test performed in December 1985 and January 1986, just before the trial, and discuss the significance of the stream discharge measurement made by the USGS upstream and downstream of municipal wells G and H to the experts' testimony and the outcome of the trial.

The instructor could also show the animations of TCE movement from 1960 to 1986 from the five known sources of TCE contamination at the Woburn Wells G & H Superfund Site (W.R. Grace, UniFirst dry cleaners, Olympia Trucking, Beatrice Foods, and New England Plastics) and the animation showing temporal changes in induced infiltration from the Aberjona River to wells G and H that were created by Martin van Oort (M.S., 2005) based on the research of Maura Metheny (M.S., 1998; Ph.D., 2004) at Ohio State University.

The article by Bair and Metheny (2002) concerning the remediation activities subsequent to the famous trial at the Wells G & H Superfund Site could be used to show how groundwater contamination is cleaned up, why different remediation schemes needed to be used in different hydrogeologic settings, and why cleanup to U.S. EPA standards can take decades.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Earth and Space Science
Hydrology
Life Science
Management
Mathematics
Measurement and Data
Political Science
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/10/2019
Veleros de Corcho, Americorp Bolsa de STEM
Read the Fine Print
Educational Use
Rating
0.0 stars

Haz un velero con corchos. A ver si flota. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.

Subject:
Applied Science
Design
Earth and Space Science
Engineering
Hydrology
Maritime Science
Oceanography
Physical Science
Physics
STEAM
Visual Arts and Design
Material Type:
Activity/Lab
Lesson Plan
Provider:
Americorps
Provider Set:
STEM in a bag weekly activity
Date Added:
02/24/2023
Vital Ice STEM Kit
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Vital Ice STEM Kit. The Natural Sciences Education & Outreach Center collaborates with CSU faculty, National Parks and citizen science programs to translate their current scientific research into unique STEM experiences for students in the form of Educational Kits that can be checked out. Each kit contains just about all of the materials needed (minus common things like water and paper towels) to explore some really interesting scientific research topics.The kits are available for teachers and informal educators in Colorado to check out for a duration of a week by submitting either a local pickup form or a delivery form available at the linked website. This kit is provided free for educational use. This Kit is available in Spanish. Global Surface Temperatures: https://scratch.mit.edu/projects/283054052/

Subject:
Agriculture and Natural Resources
Ancient History
Anthropology
Applied Science
Archaeology
Arts and Humanities
Atmospheric Science
Chemistry
Cultural Geography
Earth and Space Science
Ecology
Environmental Science
Environmental Studies
Ethnic Studies
Geology
Geoscience
History
Hydrology
Life Science
Oceanography
Paleontology
Physical Geography
Physical Science
Physics
Social Science
U.S. History
World Cultures
Material Type:
Activity/Lab
Case Study
Diagram/Illustration
Interactive
Lesson
Lesson Plan
Primary Source
Reading
Simulation
Student Guide
Unit of Study
Provider:
Colorado State University
Provider Set:
CSU Natural Sciences Education & Outreach Center
Date Added:
02/06/2023
Water Chemistry Curiosities
Unrestricted Use
Public Domain
Rating
0.0 stars

We will go below the surface and learn how water chemistry plays an important role in the Rain Shadow Effect. First, check out the Watershed Council Director video to learn how the Powder Basin Watershed Council is supporting efforts to restore their rivers, streams, and lakes in an arid part of Eastern Oregon. In the Discovery Challenge video, explore and learn how water chemistry plays a role in the rain shadow effect causing Eastern Oregon to not get nearly as much rain as Western Oregon.

This lesson introduces NGSS standards, and those standards are listed in the lesson and is part of the Explore Science Club series, an online Career Connected Learning program developed by the Greater Oregon STEM Hub. To learn more find us at: www.go-stem.org.

Subject:
Agriculture
Agriculture and Natural Resources
Applied Science
Atmospheric Science
Chemistry
Earth and Space Science
Ecology
Environmental Science
Environmental Studies
Geology
Hydrology
Life Science
Physical Geography
Physical Science
Material Type:
Activity/Lab
Author:
Carrie Caselton Lowe from Greater Oregon STEM Hub
Date Added:
05/03/2023
The Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity was developed to give participants an understanding of Earth's water cycle by completing a WebQuest and building a model of the water cycle.

Subject:
Agriculture and Natural Resources
Earth and Space Science
Environmental Studies
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
National Aeronautics and Space Administration, Global Precipitation Measurement
Date Added:
06/11/2020
The Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

This visualization, from the US Geological Survey, provides a simple schematic of the various pathways that water can take as it cycles through ocean, lakes, atmosphere, surface and ground.

Subject:
Agriculture and Natural Resources
Applied Science
Earth and Space Science
Environmental Science
Environmental Studies
Hydrology
Physical Science
Material Type:
Reading
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
US Geological Service (USGS)
Date Added:
05/15/2012
Water Cycle: Investigating Condensation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an introduction to the water cycle where students will use observation, drawing, writing, recording, questioning, and communication to understand the concept of condensation.

Subject:
Earth and Space Science
Hydrology
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
04/12/2023
The Water Cycle: Now You See It, Now You Don't
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson is an instructor demonstration that focuses specifically on two aspects of the water cycle: evaporation and condensation. This is a well described instructor led demonstration for introducing and exploring the water cycle.

Subject:
Agriculture and Natural Resources
Earth and Space Science
Environmental Studies
Hydrology
Physical Science
Material Type:
Lesson
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Aquarius Education and Public Outreach
National Aeronautics and Space Administration
Date Added:
06/11/2020
Water Desalination Plant
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a thermal process approach to design, build and test a small-scale desalination plant that is capable of significantly removing the salt content from a saltwater solution. Students use a saltwater circuit to test the efficiency of their model desalination plant and learn how the water cycle is the basis for the thermal processes that drive their desalination plant.

Subject:
Applied Science
Earth and Space Science
Engineering
Hydrology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014