Make a sailboat out of corks. See if it floats. Activity from …
Make a sailboat out of corks. See if it floats. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
The arrow of time, from origin of the universe to the present …
The arrow of time, from origin of the universe to the present and beyond spans several major epochs throughout all of history. Cosmic evolution is the study of the many varied changes in the assembly and composition of energy, matter and life in the thinning and cooling of the universe.
In this lesson, students will explain CRaTER's purpose and how it works. …
In this lesson, students will explain CRaTER's purpose and how it works. They will also design (using paper and pencil) a cosmic ray detector to answer their own questions. CRaTER's purpose is to identify safe landing sites for future human missions to the moon; discover potential resources on the Moon; and characterize the radiation environment of the Moon. The lesson includes background information for the teacher, questions, and information about student preconceptions. This is lesson 4 of 4 from "The Cosmic Ray Telescope for the Effects of Radiation."
The students discover the basics of heat transfer in this activity by …
The students discover the basics of heat transfer in this activity by constructing a constant pressure calorimeter to determine the heat of solution of potassium chloride in water. They first predict the amount of heat consumed by the reaction using analytical techniques. Then they calculate the specific heat of water using tabulated data, and use this information to predict the temperature change. Next, the students will design and build a calorimeter and then determine its specific heat. After determining the predicted heat lost to the device, students will test the heat of solution. The heat given off by the reaction can be calculated from the change in temperature of the water using an equation of heat transfer. They will compare this with the value they predicted with their calculations, and then finish by discussing the error and its sources, and identifying how to improve their design to minimize these errors.
Students learn about the physical force of linear momentum movement in a …
Students learn about the physical force of linear momentum movement in a straight line by investigating collisions. They learn an equation that engineers use to describe momentum. Students also investigate the psychological phenomenon of momentum; they see how the "big mo" of the bandwagon effect contributes to the development of fads and manias, and how modern technology and mass media accelerate and intensify the effect.
Let's explore some science and math around why seatbelts work. Check out …
Let's explore some science and math around why seatbelts work. Check out the career video from Billie Jo Deal, Transportation Safety Coordinator from the Oregon Department of Transportation, about how she works to keep people safe on the roads. Then, in the Discovery Challenge, we build crash models and calculate restraining forces.
This lesson introduces NGSS standards, and those standards are listed in the lesson.
Videos are part of the Explore Science Club series, an asynchronous online learning program using YouTube videos that connects elementary and middle school students to STEM professionals through hands-on lessons where students explore science and engineering practices related to the highlighted careers. There is an option to use FlipGrid, an online video recording platform for students to share their discoveries
Make a kite. See if it flies. Adjust your design. Activity from …
Make a kite. See if it flies. Adjust your design. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
Crea un superhéroe volador de papel. A ver si vuela. Ajusta tu …
Crea un superhéroe volador de papel. A ver si vuela. Ajusta tu diseño. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.
Create a balloon rocket. Test your design. Activity from Weekly STEM in …
Create a balloon rocket. Test your design. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
Create a flying superhero out of paper. See if it flies. Adjust …
Create a flying superhero out of paper. See if it flies. Adjust your design. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
Students learn about the role engineers and mathematicians play in developing the …
Students learn about the role engineers and mathematicians play in developing the perfect bungee cord length by simulating and experimenting with bungee jumping using washers and rubber bands. Working as if they are engineers for a (hypothetical) amusement park, students are challenged to develop a show-stopping bungee jumping ride that is safe. To do this, they must find the maximum length of the bungee cord that permits jumpers (such as brave Washy!) to get as close to the ground as possible without going "splat"! This requires them to learn about force and displacement and run an experiment. Student teams collect and plot displacement data and calculate the slope, linear equation of the line of best fit and spring constant using Hooke's law. Students make hypotheses, interpret scatter plots looking for correlations, and consider possible sources of error. An activity worksheet, pre/post quizzes and a PowerPoint® presentation are included.
Students are introduced to servos and the flex sensor as they create …
Students are introduced to servos and the flex sensor as they create simple, one-jointed, finger robots controlled by Arduino. Servos are motors with feedback and are extensively used in industrial and consumer applications—from large industrial car-manufacturing robots that use servos to hold heavy metal and precisely weld components together, to prosthetic hands that rely on servos to provide fine motor control. Students use Arduino microcontrollers and flex sensors to read finger flexes, which they process to send angle information to the servos. Students create working circuits; use the constrain, map and smoothing commands; learn what is meant by library and abstraction in a coding context; and may even combine team finger designs to create a complete prosthetic hand of bendable fingers.
Students’ background understanding of electricity and circuit-building is reinforced as they create …
Students’ background understanding of electricity and circuit-building is reinforced as they create wearable, light-up e-textile pins. They also tap their creative and artistic abilities as they plan and produce attractive end product “wearables.” Using fabric, LED lights, conductive thread (made of stainless steel) and small battery packs, students design and fabricate their own unique light-up pins. This involves putting together the circuitry so the sewn-in LEDs light up. Connecting electronics with stitching instead of soldering gives students a unique and tangible understanding of how electrical circuits operate.
Students will be guided through the procedure for creating a partial-pressure diagram …
Students will be guided through the procedure for creating a partial-pressure diagram in the low-temperature system Cu-CO2-O2-H2O system for the minerals cuprite, tenorite, native copper, azurite, and malachite. They will write chemical reactions and use Gibbs Free Energies to calculate Log K and plot lines on a graph with axes Log P CO2 and Log PO2 for stability boundaries between minerals. They are provided with data to then create their own diagram for the Fe-CO2-O2 system.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Student teams investigate the properties of electromagnets. They create their own small …
Student teams investigate the properties of electromagnets. They create their own small electromagnet and experiment with ways to change its strength to pick up more paper clips. Students learn about ways that engineers use electromagnets in everyday applications.
Crea un globo cohete. Pruebe su diseño. Actividad de Bolsa de STEM …
Crea un globo cohete. Pruebe su diseño. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.
This short exercise introduces students to phase diagrams that have a eutectic …
This short exercise introduces students to phase diagrams that have a eutectic and a peritectic. After learning about such phase diagrams, students answer questions about melt composition, temperature, cooling and melting, crystalization, and melt:crystal ratios.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this laboratory exercise students explore the crystallization behavior of a rock …
In this laboratory exercise students explore the crystallization behavior of a rock of known composition at 1 atmosphere pressure using experimental and numerical methods and phase diagrams. They also create and use diagrams to classify their igneous rock and identify its tectonic setting. They compare results of the three methods, and then give a presentation of their results to the class.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.