"Build It Yourself: Satellite!" is an online Flash game hosted on the …
"Build It Yourself: Satellite!" is an online Flash game hosted on the James Webb Space Telescope website. The goal of the game is to explain the decision-making process of satellite design. The user can choose to build a "small," "medium," or "large" astronomy satellite. The user then selects science goals, wavelength, instruments, and optics. The satellite is then launched on the appropriate rocket (shown via an animation). Finally, the user is shown what their satellite might look like, as well as what kind of data it might collect, via examples from similar real-life satellites. Satellites range from small X-ray missions without optics (like the Rossi X-ray Timing Explorer) to large missions with segmented mirrors (like the James Webb Space Telescope).
In this activity, learners consider the requirements for human life beyond Earth's …
In this activity, learners consider the requirements for human life beyond Earth's protection: air to breathe, plentiful food, shielding from ultraviolet light, power, etc. They then work in teams to design and construct a model of a space colony out of craft materials that would allow humans to survive the harsh environments of the Moon or Mars. Teams present their modules and colonies to one another and create a display for the library. This activity is part of Explore! To the Moon and Beyond! - developed specifically for use in libraries.
This is an activity about the moon. Learners will create their own …
This is an activity about the moon. Learners will create their own models of lunar orbiters out of edible or non-edible materials. They determine what tools would be necessary to help us better understand the Moon and plan for a future lunar outpost. Then they incorporate these elements into their models. NASA's Lunar Reconnaissance Orbiter is used as an example of a spacecraft armed with "eyes," "ears," and other tools for exploration. This activity is part of Explore! To the Moon and Beyond! - a resource developed specifically for use in libraries.
This is an lesson about spectrographs. Learners will build and decorate their …
This is an lesson about spectrographs. Learners will build and decorate their own spectrographs using simple materials and holographic diffraction gratings. After building the spectrographs, they observe the spectra of different light sources. Requires advance preparation to spray-paint the inside of the containers black the day before construction. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.
This is an assessment activity for the The Cosmic Ray Telescope for …
This is an assessment activity for the The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) educational kit. Learners will make a poster that explains possible origins of cosmic rays, how they affect people, and what protects us here on Earth. Alternately, they will make a poster describing CRaTER’s goal and how it works.
This math example explains what celestial objects a person can see with …
This math example explains what celestial objects a person can see with the unaided eye from the vantage points of Earth and Mars, using simple math, algebra and astronomical distance information. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
This activity has two purposes: challenge the learner to develop a procedure …
This activity has two purposes: challenge the learner to develop a procedure for investigating a research question and to learn more about factors affecting the dynamics of air in motion. It demonstrates that warm air and cold air differ in weight and this difference affects air's vertical movement in the atmospheric column. Resources provided to students for this challenge include a homemade balance beam made of wood, two paper bags, a desk lamp, paper clips, tape and a thermometer. The resource includes background information, teaching tips and questions to guide student discussion. This is the chapter 8 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.
This online lab exercise focuses on the processes involved in the Carbon …
This online lab exercise focuses on the processes involved in the Carbon cycle and the influences of human activity on those processes- especially as they relate to Earth's weather and climate. The fourth in a 10-part lab series on weather and climate, this lab exercise is designed for first and second year college geoscience students (majors and non-majors) as well as pre-service STEM teachers.
This lesson attempts to correct the common misconception that the Earth is …
This lesson attempts to correct the common misconception that the Earth is closer to the Sun during the summer in the Northern Hemisphere. Proceeding from student preconceptions, small groups participate in an exploration of the cause of the seasons using a basketball, small globes and a lamp. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
This lesson addresses the common student misconception that the Earth is closer …
This lesson addresses the common student misconception that the Earth is closer to the Sun during the summer in the Northern Hemisphere. This lesson encourages students to voice this misconception at the beginning of the lesson and then attempts to correct it-first, by exploring the reason for it, and then by presenting an alternate explanation. Materials needed for the demonstration include a small globe and a desk lamp for each group of students, a large ball, and overhead transparency. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
With this game, students explore the connection between climate, genetic variation and …
With this game, students explore the connection between climate, genetic variation and the transmission of hantavirus. A board and game pieces are provided. The resource is supported by teacher background information, assessments, and a scoring rubric. This is Activity 1 of the learning module, Human Health, Climate and Disease: A Critical Connection, part of the lesson series, Potential Consequences of Climate Variability and Change.
This is an activity about image comparison. Learners will analyze and compare …
This is an activity about image comparison. Learners will analyze and compare two sets of images of the Sun taken by instruments on the Solar Dynamics Observatory spacecraft. With Set 1, they will observe the Sun in both a highly active and a minimally active state, and be able to detect active regions and loops on the Sun by comparing the two images. With Set 2, they will identify areas of high magnetic activity on a magnetogram image and recognize that these areas correspond to highly active regions on the Sun.
Students are presented with a graph of atmospheric becomes CO² values from …
Students are presented with a graph of atmospheric becomes CO² values from Mauna Loa Observatory, and are asked to explore the data by creating a trend line using the linear equation, and then use the equation to predict future becomes CO² levels. Students are asked to describe qualitatively what they have determined mathematically, and suggest reasons for the patterns they observe in the data. A clue to the reason for the data patterning can be deduced by students by following up this activity with the resource, Seasonal Vegetation Changes. The data graph and a student worksheet is included with this activity. This is an activity from Space Update, a collection of resources and activities provided to teach about Earth and space. Summary background information, data and images supporting the activity are available on the Earth Update data site.
This activity requires construction of a simple salinity tester. Students will create …
This activity requires construction of a simple salinity tester. Students will create their own calibration scale during this experiment, and look at the change in salinity that would arise if freshwater was suddenly dumped into the ocean. Materials needed for this investigation include a DC mill ampere meter, 2 D-cell batteries and holder, bronze sheeting, #18 solid wire, salt, deionized water, and a stream table or pan apparatus to create a hydrologic model of ice-ocean interaction. Included is a student worksheet to guide interpretation of data. The resource is supported by teacher background information, assessment suggestions, and a scoring rubric. This is Activity 3 of the learning module, Water: Here, There, and Everywhere, part of the lesson series, The Potential Consequences of Climate Variability and Change.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.