Compasses and Codes. This is the Lesson 1 Exposure Activity, from Unit …
Compasses and Codes. This is the Lesson 1 Exposure Activity, from Unit 3 Natural Resources, from the DIGS (Developing Individuals, Growing Stewards) AmeriCorps Curriculum from CSU. The curriculum focuses on introducing students in grades 3-5 to Colorado agriculture, industry and environmental issues. The curriculum upon request. Visit: https://engagement.colostate.edu/programs-old/developing-individuals-growing-stewards/
In the everyday electrical devices we use calculators, remote controls and cell …
In the everyday electrical devices we use calculators, remote controls and cell phones a voltage source such as a battery is required to close the circuit and operate the device. In this hands-on activity, students use batteries, wires, small light bulbs and light bulb holders to learn the difference between an open circuit and a closed circuit, and understand that electric current only occurs in a closed circuit.
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel …
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel can be increased through the use of a concentrating device, such as a reflector or lens. This is the final lesson in the Photovoltaic Efficiency unit and is intended to accompany a fun design project (see the associated Concentrating on the Sun with PVs activity) to wrap up the unit. However, it can be completed independently of the other unit lessons and activities.
Students design, build and test reflectors to measure the effect of solar …
Students design, build and test reflectors to measure the effect of solar reflectance on the efficiency of solar PV panels. They use a small PV panel, a multimeter, cardboard and foil to build and test their reflectors in preparation for a class competition. Then they graph and discuss their results with the class. Complete this activity as part of the Photovoltaic Efficiency unit and in conjunction with the Concentrated Solar Power lesson.
This activity involves an investigation into whether items in a classroom are …
This activity involves an investigation into whether items in a classroom are conductors or insulators. The students predict and then test the items using a complete circuit they have built.
Students gain a deeper understanding of how sound sensors work through a …
Students gain a deeper understanding of how sound sensors work through a hands-on design challenge involving LEGO MINDSTORMS(TM) NXT taskbots and sound sensors. Student groups each program a robot computer to use to the sound of hand claps to control the robot's movement. They learn programming skills and logic design in parallel. They experience how robots can take sensor input and use it to make decisions to move and turn, similar to the human sense of hearing. A PowerPoint® presentation and pre/post quizzes are provided.
Visualize the electrostatic force that two charges exert on each other. Observe …
Visualize the electrostatic force that two charges exert on each other. Observe how changing the sign and magnitude of the charges and the distance between them affects the electrostatic force.
Hostile use of Unmanned Aircraft Systems (UAS) technology is on the forefront …
Hostile use of Unmanned Aircraft Systems (UAS) technology is on the forefront of DoD defense and offensive planners.Our Counter-UAS (C-UAS) textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.
This video explains the design of the Arecibo Message transmitted in the …
This video explains the design of the Arecibo Message transmitted in the 1970s by SETI pioneers. It explains why humans sent the message and who they hope might receive it. It shows the telescope in Brasil. It plays the audio signal from the message that was sent and shows how that signal can be converted to binary to show an image. It also gives a brief overview of how the binary number system works.
The design of concurrent distributed hardware systems is a major challenge for …
The design of concurrent distributed hardware systems is a major challenge for engineers today and is bound to escalate in the future, but engineering education continues to emphasize traditional tools of logic design that are just not up to the job. For engineers tackling realistic projects, improvised attempts at synchronization across multiple clock domains have long been a fact of life. Prone to hazards and metastability, these ad hoc interfaces could well be the least trustworthy aspects of a system, and typically also the least able to benefit from any readily familiar textbook techniques of analysis or verification.
Progress in the long run depends on a change of tactics. Instead of the customary but inevitably losing battle to describe complex systems in terms of their stepwise time evolution, taking their causal relationships and handshaking protocols as a starting point cuts to the chase by putting the emphasis where it belongs. This way of thinking may call for setting aside a hard earned legacy of practice and experience, but it leads ultimately to a more robust and scalable methodology.
Delay insensitive circuits rely on local coordination and control from the ground up. The most remarkable consequence of adhering to this course is that circuits can get useful things done without any clock distribution network whatsoever. Because a handshake acknowledgment concludes each interaction among primitive components and higher level subsystems alike, a clock pulse to mark them would be superfluous. This effect can bring a welcome relief to projects whose timing infrastructure would otherwise tend to create more problems than it solves.
The theory of delay insensitive circuits is not new but has not yet attracted much attention outside of its research community. At best ignored and at worst discouraged in standard curricula, this topic until now has been accessible only by navigating a sea of conference papers and journal articles, some of them paywalled. Popular misconceptions and differing conventions about terminology and notation have posed further barriers to entry. To address this need, this book presents a unified account of delay insensitive circuits from first principles to cutting edge concepts, subject only to an undergraduate-level understanding of discrete math. In an approachable tutorial format with numerous illustrations, exercises, and over three hundred references, it guides an engineering professional or advanced student towards proficiency in this extensive field.
Students investigate circuits and their components by building a basic thermostat. They …
Students investigate circuits and their components by building a basic thermostat. They learn why key parts are necessary for the circuit to function, and alter the circuit to optimize the thermostat temperature range. They also gain an awareness of how electrical engineers design circuits for the countless electronic products in our world.
Students will learn the potential costs and benefits of social media, digital …
Students will learn the potential costs and benefits of social media, digital consumption, and our relationship with technology as a society in the three-week lesson. This inquiry based unit of study will answer the following questions:
Essential Question: How can we use science fiction’s ability to predict the future to help humanity?
Supportive Questions 1: What predictions of future development has science fiction accurately made in the past? This can include technology, privacy, medicine, social justice, political, environmental, education, and economic.
Supportive Question 2: What predictions for future development in contemporary science fiction are positive for the future of humanity? What factors need to begin in your lifetime to make these predictions reality?
Supportive Question 3: What predictions for future development in contemporary science fiction are negative for the future of humanity? What factors need to begin in your lifetime to stop these negative outcomes?
Students' understanding of how robotic ultrasonic sensors work is reinforced in a …
Students' understanding of how robotic ultrasonic sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors. Student groups program their robots to move freely without bumping into obstacles (toy LEGO people). They practice and learn programming skills and logic design in parallel. They see how robots take input from ultrasonic sensors and use it to make decisions to move, resulting in behavior similar to the human sense of sight but through the use of sound sensors, more like echolocation. Students design-test-redesign-retest to achieve successful programs. A PowerPoint® presentation and pre/post quizzes are provided.
This lesson introduces students to the fundamental concepts of electricity. This is …
This lesson introduces students to the fundamental concepts of electricity. This is accomplished by addressing questions such as "How is electricity generated," and "How is it used in every-day life?" The lesson also includes illustrative examples of circuit diagrams to help explain how electricity flows.
Building on concepts taught in the associated lesson, students learn about bioelectricity, …
Building on concepts taught in the associated lesson, students learn about bioelectricity, electrical circuits and biology as they use deductive and analytical thinking skills in connection with an engineering education. Students interact with a rudimentary electrocardiograph circuit (made by the teacher) and examine the simplicity of the device. They get to see their own cardiac signals and test the device themselves. During the second part of the activity, a series of worksheets, students examine different EKG print-outs and look for irregularities, as is done for heart disease detection.
This course is an introduction to power electronics. First the principles of …
This course is an introduction to power electronics. First the principles of power conversion with switching circuits are treated as well as main applications of power electronics. Next the basic circuits of power electronics are explained, including ac-dc converters (diode rectifiers), dc-dc converters (non-isolated and isolated) and dc-ac converters (inverters). Related issues such as pulse width modulation, methods of analysis, voltage distortion and power quality are treated in conjunction with the basic circuits. The main principles of operation of most commonly used power semiconductor switches are explained. Finally, the role of power electronics in sustainable energy future, including renewable energy systems and energy efficiency is discussed.
Study Goals To get acquainted with applications of power electronics, to obtain insight in the principles of power electronics, to get an overview of power electronic circuits and be able to select appropriate circuits for specific applications and finally to be able to analyse the circuits. The focus in the course is on analysis and to a lesser extent on design.
Students learn about current electricity and necessary conditions for the existence of …
Students learn about current electricity and necessary conditions for the existence of an electric current. Students construct a simple electric circuit and a galvanic cell to help them understand voltage, current and resistance.
Energízate Equipo STEM. El Centro de Extensión y Educación en Ciencias Naturales …
Energízate Equipo STEM. El Centro de Extensión y Educación en Ciencias Naturales colabora con la facultad de CSU, los Parques Nacionales y los programas de ciencia ciudadana para traducir su investigación científica actual en experiencias STEM únicas para los estudiantes en forma de kits educativos que se pueden prestar. Cada kit contiene casi todos los materiales necesarios (menos cosas comunes como agua y toallas de papel) para explorar algunos temas de investigación científica realmente interesantes. enviando un formulario de recogida local o un formulario de entrega disponible en el sitio web vinculado. Utilice la información de contacto en la página de descripción general del kit STEM para obtener más información. https://www.cns-eoc.colostate.edu/stem-kits/ Este kit se proporciona de forma gratuita para uso educativo.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.