Working as if they are engineers who work for (the hypothetical) Build-a-Toy …
Working as if they are engineers who work for (the hypothetical) Build-a-Toy Workshop company, students apply their imaginations and the engineering design process to design and build prototype toys with moving parts. They set up electric circuits using batteries, wire and motors. They create plans for project material expenses to meet a budget.
Students create their own anemometers instruments for measuring wind speed. They see …
Students create their own anemometers instruments for measuring wind speed. They see how an anemometer measures wind speed by taking measurements at various school locations. They also learn about different types of anemometers, real-world applications, and how wind speed information helps engineers decide where to place wind turbines.
This is an activity about the moon. Learners will create their own …
This is an activity about the moon. Learners will create their own models of lunar orbiters out of edible or non-edible materials. They determine what tools would be necessary to help us better understand the Moon and plan for a future lunar outpost. Then they incorporate these elements into their models. NASA's Lunar Reconnaissance Orbiter is used as an example of a spacecraft armed with "eyes," "ears," and other tools for exploration. This activity is part of Explore! To the Moon and Beyond! - a resource developed specifically for use in libraries.
Students are challenged to design their own small-sized prototype light sculptures to …
Students are challenged to design their own small-sized prototype light sculptures to light up a hypothetical courtyard. To accomplish this, they use Arduino microcontrollers as the “brains” of the projects and control light displays composed of numerous (3+) light-emitting diodes (LEDs). With this challenge, students further their learning of Arduino fundamentals by exploring one important microcontroller capability—the control of external circuits. The Arduino microcontroller is a powerful yet easy-to-learn platform for learning computer programing and electronics. LEDs provide immediate visual success/failure feedback, and the unlimited variety of possible results are dazzling!
Urban design, inequality and segregation are strongly connected. Cities around the world, …
Urban design, inequality and segregation are strongly connected.
Cities around the world, from the Global South to the Global North, are facing a rise in inequality and socio-economic segregation. The wealthy are increasingly concentrating in the most attractive urban areas and poverty is spreading to the suburbs. Rising levels of segregation have major consequences for the social sustainability of cities and leads to unequal life opportunities depending on where in the city you live.
In this course, aimed at a broad range of professionals, from urban planners and architects to geographers, you will learn what the main drivers and indicators of urban inequality and segregation are, using examples from cities from all over the world. You will learn how segregation is measured, how to interpret the results of the analyses of segregation and how to relate these insights to urban design. With this knowledge, you will be able to analyze how these issues may be affecting your local environment.
Additionally, we will present some historical examples of how urban design has played a role shaping spatial inequality and segregation in a selection of case study cities. This will help you to get a better understanding of how urban design can reduce spatial inequality and segregation.
The course is taught by the editors of the new SpringerOpen book “Urban socio-economic segregation and income inequality. A global perspective” and senior experts from the Urban Design section of TU Delft, which is ranked number 2 in the QS World University Rankings in the field of Architecture.
This book offers a web-based multimedia platform to enable students in Architecture, …
This book offers a web-based multimedia platform to enable students in Architecture, Civil Engineering, and Construction Engineering to learn fundamentals of BIM using Revit and be able to create building architectural, mechanical and structural models, develop construction documentation and analyze building performance. The platform include: book chapters on detailed Revit instructions and videos.
Students build their own small-scale model roller coasters using pipe insulation and …
Students build their own small-scale model roller coasters using pipe insulation and marbles, and then analyze them using physics principles learned in the associated lesson. They examine conversions between kinetic and potential energy and frictional effects to design roller coasters that are completely driven by gravity. A class competition using different marbles types to represent different passenger loads determines the most innovative and successful roller coasters.
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to …
Building Oscillation Seismic Simulation, or BOSS, is an opportunity for learners to explore the phenomenon of resonance for different building heights while performing a scientific experiment that employs mathematical skills. They experience how structures behave dynamically during an earthquake.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
IRIS (Incorporated Research Institutions for Seismology), FEMA (Federal Emergency Management Administration), ShakeAlert, Chris Hedeen (Oregon City High School), and ANGLE Project
Working in teams of four, students build tetrahedral kites following specific instructions …
Working in teams of four, students build tetrahedral kites following specific instructions and using specific materials. They use the basic processes of manufacturing systems – cutting, shaping, forming, conditioning, assembling, joining, finishing, and quality control – to manufacture complete tetrahedral kites within a given time frame. Project evaluation takes into account team efficiency and the quality of the finished product.
Educators with an interest in hands-on science, technology, engineering and mathematics (STEM) …
Educators with an interest in hands-on science, technology, engineering and mathematics (STEM) disciplines will receive introductory instructions on how to design, engineer and build a fully functional underwater ROV.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students investigate the weather from a systems approach, learning how individual parts …
Students investigate the weather from a systems approach, learning how individual parts of a system work together to create a final product. Students learn how a barometer works to measure the Earth's air pressure by building a model using simple materials. Students analyze the changes in barometer measurements over time and compare those to actual weather conditions. They learn how to use a barometer to understand air pressure and predict actual weather changes.
This is an lesson about spectrographs. Learners will build and decorate their …
This is an lesson about spectrographs. Learners will build and decorate their own spectrographs using simple materials and holographic diffraction gratings. After building the spectrographs, they observe the spectra of different light sources. Requires advance preparation to spray-paint the inside of the containers black the day before construction. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.
Students create and decorate their own spectrographs using simple materials and holographic …
Students create and decorate their own spectrographs using simple materials and holographic diffraction gratings. A holographic diffraction grating acts like a prism, showing the visual components of light. After building the spectrographs, students observe the spectra of different light sources as homework.
Students learn how to build simple piezoelectric generators to power LEDs. To …
Students learn how to build simple piezoelectric generators to power LEDs. To do this, they incorporate into a circuit a piezoelectric element that converts movements they make (mechanical energy) into electrical energy, which is stored in a capacitor (short-term battery). Once enough energy is stored, they flip a switch to light up an LED. Students also learn how much (surprisingly little) energy can be converted using the current state of technology for piezoelectric materials.
Students create and analyze composite materials with the intent of using the …
Students create and analyze composite materials with the intent of using the materials to construct a structure with optimal strength and minimal density. The composite materials are made of puffed rice cereal, marshmallows and chocolate chips. Student teams vary the concentrations of the three components to create their composite materials. They determine the material density and test its compressive strength by placing weights on it and measuring how much the material compresses. Students graph stress vs. strain and determine Young's modulus to analyze the strength of their materials.
A zip line is a way to glide from one point to another while hanging from a cable. Design and create a zip line that is safe for a hard-boiled egg. After designing a safety egg harness, connect the harness to fishing line or wire connected between two chairs of different heights using a paper clip. Learn to improve your zip line based on data. Attach a motion sensor at the bottom of your zip line and display a graph to show how smooth a ride your egg had!
Students design and construct electromagnets that must pick up 10 staples. They …
Students design and construct electromagnets that must pick up 10 staples. They begin with only minimal guidance, and after the basic concept is understood, are informed of the properties that affect the strength of that magnet. They conclude by designing their own electromagnets to complete the challenge of separating scrap steel from scrap aluminum for recycling, and share it with the class.
Earthquakes happen when forces in the Earth cause violent shaking of the …
Earthquakes happen when forces in the Earth cause violent shaking of the ground. Earthquakes can be very destructive to buildings and other man-made structures. Design and build various types of buildings, then test your buildings for earthquake resistance using a shake table and a force sensor that measures how hard a force pushes or pulls your building.
What does the brain look like? As engineers, how can we look …
What does the brain look like? As engineers, how can we look at neural networks without invasive surgery? In this activity, students design and build neuron models based on observations made while viewing neurons through a microscope. The models are used to explain how each structure of the neuron contributes to the overall function. Students share their models with younger students and explain what a neuron is, its function, and how engineers use their understanding of the neuron to make devices to activate neurons.
Students are introduced to some basic civil engineering concepts in an exciting …
Students are introduced to some basic civil engineering concepts in an exciting and interactive manner. Bridges and skyscrapers, the two most visible structures designed by civil engineers, are discussed in depth, including the design principles behind them. To help students visualize in three dimensions, one hands-on activity presents three-dimensional coordinate systems and gives students practice finding and describing points in space. After learning about skyscrapers, tower design principles and how materials absorb different types of forces, students compete to build their own newspaper towers to meet specific design criteria.The unit concludes with student groups using balsa wood and glue to design and build tower structures to withstand vertical and lateral forces.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.