Updating search results...

Search Resources

1900 Results

View
Selected filters:
  • Engineering
Lunar Lollipops
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work in teams of two to discover the relative positions of the Earth, Sun and Moon that produce the different phases of the Moon. Groups are each given a Styrofoam ball that they attach to a pencil so that it looks like a lollipop. In this acting-out model exercise, this ball on a stick represents the Moon, the students represent the Earth and a hanging lightbulb serves as the Sun. Students move the "Moon" around them to discover the different phases. They fill in the position of the Moon and its corresponding phase in a worksheet.

Subject:
Applied Science
Astronomy
Earth and Space Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Lunar Reconnaissance Orbiter Communication Design Challenge
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This is an activity about spacecraft design. Teams of learners will model how scientists and engineers design and build spacecraft to collect, store, and transmit data to earth. Teams will design a system to store and transmit topographic data of the Moon and then analyze that data and compare it to data collected by the Lunar Reconnaissance Orbiter .

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Data Set
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
05/02/2023
Lunch in Outer Space!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the unique challenges astronauts face while eating in outer space. They explore different food choices and food packaging. Students learn about the engineering design process, and then, as NASA engineering teams, they design and build original model devices to help astronauts eat in a microgravity environment --- their own creative devices for food storage and meal preparation.

Subject:
Applied Science
Astronomy
Earth and Space Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
MMS Bookmark Activity
Read the Fine Print
Educational Use
Rating
0.0 stars

This is a lithograph about NASA's Magnetospheric Multiscale Mission, or MMS. Learners will cut out and assemble a colorful 3D model of an MMS spacecraft. Web links, additional facts, and QR codes are included for audiences to access more information.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Data Set
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
05/02/2023
MRI Safety Grand Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given an engineering challenge: A nearby hospital has just installed a new magnetic resonance imaging facility that has the capacity to make 3D images of the brain and other body parts by exposing patients to a strong magnetic field. The hospital wishes for its entire staff to have a clear understanding of the risks involved in working near a strong magnetic field and a basic understanding of why those risks occur. Your task is to develop a presentation or pamphlet explaining the risks, the physics behind those risks, and the safety precautions to be taken by all staff members. This 10-lesson/4-activity unit was designed to provide hands-on activities to teach end-of-year electricity and magnetism topics to a first-year accelerated or AP physics class. Students learn about and then apply the following science concepts to solve the challenge: magnetic force, magnetic moments and torque, the Biot-Savart law, Ampere's law and Faraday's law. This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Machines and Tools, Part II
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students gain first-hand experience with the mechanical advantage of pulleys. Students are given the challenge of helping save a whale by moving it from an aquarium back to its natural habitat into the ocean. They set up different pulley systems, compare the theoretical and actual mechanical advantage of each and discuss their recommendations as a class.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
MadaFabLab: an inclusive STEM and fabrication environment for creativity and innovation and its impact on persons with disabilities
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Fabrication laboratories (FabLabs) are utilized to materialize concepts. They can improve cognitive and creative abilities when used in a design-learning situation. Numerous studies have attempted to comprehend the relationship between makerspaces and creativity in a variety of disciplines, with the capacity to generate innovative consequences in makerspaces dependent on creativity. However, a comprehensive study that provides a holistic perspective on the contributions of labs as inclusive places that stimulate creativity for people with disabilities is absent. In order to address this study gap, the paper that follows provides an overview of FabLabs, makerspaces, and creativity and introduce the first of its kind MadaFabLab, as the first inclusive fablab in the world designed and tailored for innovators with disabilities “MadaFabLab”. The studies revealed that fablabs contribute to the development of creative person, product, physical, and social surroundings, as well as creative process. In addition, the MadaFabLab, a novel inclusive idea, fosters problem-solving, collaborative, and communication skills, and offers appealing locations and tools for the development of creative solutions to real-world challenges and needs identified by people with disabilities. We identified and analyzed five important themes pertaining to technical skills, technological and environmental factors, STEM learning, and skill development, and focused on their significance for fostering creativity in an inclusive FabLab.

Subject:
Applied Science
Career and Technical Education
Computer, Networking and Telecommunications Systems
Education
Electronic Technology
Engineering
Information Science
Mathematics
Material Type:
Reading
Date Added:
04/08/2023
Mada ICT-AID Competency Framework
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

ICT accessibility and inclusive design is considered as a relevant and essential topic that needs to be well covered and integrated within capacity building, training and education curricula and programmes. Despite this urgent need, there is a lack of integration of ICT-AID aligned courses in educational institutions and professional development services based on a comprehensive Global competency framework delimiting all required relevant competencies and capabilities in the field of ICT accessibility and Inclusive Design. It is in this context that Mada center has developed an open competency framework in a bid to guide globally training of students and workers on ICT accessibility and inclusive design, so that they will be well prepared to excel in their accessibility professions and contribute in the creation of accessible products, contents and services.

Subject:
Applied Science
Computer Science
Computer, Networking and Telecommunications Systems
Education
Engineering
Health, Medicine and Nursing
Higher Education
Information Science
Special Education
Material Type:
Lesson Plan
Syllabus
Date Added:
04/11/2023
Magic Magnetic Fluid
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to a unique fluid ferrofluids the shape of which can be influenced by magnetic fields. This activity supplements traditional magnetism activities and offers comparisons between large-scale materials and nanomaterials.Students are introduced to the concepts of magnetism, surfactants and nanotechnology by relating movie magic to practical science. Students observe ferrofluid properties as a stand-alone fluid and under an imposed magnetic field. They learn about the components of ferrofluids and their functionality as they create shapes using magnetically controlled ferrofluids and create their masterpieces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Magical Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students watch video clips from the October Sky and Harry Potter and the Sorcerer's Stone movies to see examples of projectile motion. Then they explore the relationships between displacement, velocity and acceleration, and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on "The Science Behind Harry Potter" theme. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
The Magician's Catapult
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students reinforce their understanding of compound machines by building a catapult. This compound machine consists of a lever and a wheel-and-axel. Catapults have been designed by engineers for a variety of purposes from lifting boulders into the air for warfare to human beings for entertainment; the projectiles in this activity are grapes for a magic act. Given the building materials, students design and build their catapult to launch a grape a certain distance.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Magnetic Attraction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete a series of six short investigations involving magnets to learn more about their properties. Students also discuss engineering uses for magnets and brainstorm examples of magnets in use in their everyday lives.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/26/2008
Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Magnetic Fields Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Magnetic Fluids
Read the Fine Print
Educational Use
Rating
0.0 stars

In this fun, engaging activity, students are introduced to a unique type of fluid ferrofluids whose shape can be influenced by magnetic fields! Students act as materials engineers and create their own ferrofluids. They are challenged to make magnetic ink out of ferrofluids and test their creations to see if they work. Concurrently, they learn more about magnetism, surfactants and nanotechnology. As they observe fluid properties as a standalone-fluid and under an imposed magnetic field, they come to understand the components of ferrofluids and their functionality.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Magnetic Launcher
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore electromagnetism and engineering concepts using optimization techniques to design an efficient magnetic launcher. Groups start by algebraically solving the equations of motion for the velocity at the time when a projectile leaves a launcher. Then they test three different launchers, in which the number of coils used is different, measuring the range and comparing the three designs. Based on these observations, students record similarities and differences and hypothesize on the underling physics. They are introduced to Faraday's law and Lenz's law to explain the physics behind the launcher. Students brainstorm how these principals might be applied to real-world engineering problems.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Magnetic Materials
Read the Fine Print
Educational Use
Rating
0.0 stars

Students begin working on the grand challenge of the unit by thinking about the nature of metals and quick, cost-effective means of separating different metals, especially steel. They arrive at the idea, with the help of input from relevant sources, to use magnets, but first they must determine if the magnets can indeed isolate only the steel.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
A Magnetic Personality
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about magnets and how they are formed. They investigate the properties of magnets and how engineers use magnets in technology. Specifically, students learn about magnetic memory storage, which is the reading and writing of data information using magnets, such as in computer hard drives, zip disks and flash drives.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Magnetic Resonance Imaging
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014