Updating search results...

Transportation, Distribution, & Logistics

25 affiliated resources

Search Resources

View
Selected filters:
A Tour of Colorado Mining Towns
Read the Fine Print
Educational Use
Rating
0.0 stars

Western Mining History presents a brief summary of Colorado Mining Towns with links to additional Colorado resources for a mining town database and mines by county. Western Mining History is an historical site that provides information on mining, mining towns, gold and Photos and maps of the western United States. Consider becoming a member or making a donation to help further the work of the site.

Subject:
Anthropology
Applied Science
Chemistry
Cultural Geography
Earth and Space Science
Economics
English Language Arts
Environmental Science
Geology
Geoscience
History
Physical Geography
Physical Science
Reading Informational Text
Social Science
Sociology
U.S. History
Material Type:
Primary Source
Reading
Provider:
Western Mining History
Provider Set:
Colorado Mining Towns
Date Added:
02/06/2023
Transportation and Spatial Modelling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

1. Objectives of modelling in transport and spatial planning. Model types. Theory of travel and locational behaviour. System description of planning area. Theory of choice models. Aggregate and disaggregate models. Mode choice, route choice and assignment modelling. Locational choice modelling. Parameter estimation and model calibration. Cases and exercises in model application; 2. Role of models in transportation and spatial systems analysis; model types; designing system description of study area (zonal segmentation, network selection); role of shortest path trees; 3. Utility theory for travel and location choice; trip generation models, trip distribution models; applications; 4. Theory of spatial interaction model; role of side constraints; distribution functions and their estimations; constructing base matrices and estimating OD-tables; 5. Theory of individual choice models; 6. Disaggregated choice models of the logit and probit type for time choice, mode choice, route choice and location choice; 7. Integrated models (sequential and simultaneous) for constructing OD-tables; 8. Equilibrium theory in networks and spatial systems; 9. Route choice and assignment; derivation of different model types (all-or-nothing model, multiple route model, (stochastic) equilibrium model); assignment in public transportation networks; analyses of effects; 10. Calibration of parameters and model validation; observation, estimation, validation; estimation methods; 11. Individual exercise computing travel demand in networks; getting familiar with software; computing all transportation modelling steps; analyse own planning scenarios; writing a report.Study Goals: 1. Insight in the function of mathematical models in transportation and spatial planning; 2. Knowledge of theoretical backgrounds of models; 3. Knowledge of application areas of models; 4. Ability to develop one's own plan of analysis for model computations; 5. Ability to apply models on planning problems; 6. Ability to present outcomes of model computations.

Subject:
Business and Communication
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Date Added:
05/12/2023
Unit 3: What's in YOUR watershed?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students investigate water resources of their own area or another area of personal interest, which typically gets them very excited. They apply their knowledge from Units 1 and 2 to identify the water reservoirs which are most important to their local community, the transport pathways responsible for delivering water to those reservoirs, and the relevant and available techniques for monitoring those resources. They also consider interests by different stakeholder groups in relation to water resources and how these potentially competing interests could influence water policy, infrastructure, and distribution in a community.

Show more about Online Teaching suggestions
Hide
Online-adaptable: The Unit 3.1 exercise is really designed as an in-person stakeholder analysis that might be more challenging to translate to online. However the larger part of the unit, Unit 3.2 Local Watershed investigation, is designed as a student project that can be done individually and would translate well to online.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/03/2022
Using Data From the Arsenic Problem in Bangladesh
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module looks at the feasibility of using deeper wells as a source of low As water. The data sets are described in detail by van Geen et al. (van Geen et al., 2003; van Geen et al., 2002).

Students are being introduced to background information about the Arsenic problem in Bangladesh in lecture format. This includes health aspects and the history of the issue. They also have been using the sand tank groundwater model distributed by the University of Wisconsin Stevens Point (https://www.uwsp.edu/cnr-ap/watershed/Pages/GroundwaterModelWorkshop.aspx) to develop an intuitive understanding of groundwater flow and transport and are familiar with basic hydrogeological concepts. They inject a dye into the shallow aquifer of the model and study how pumping effects the migration of the Arsenic plume (Fig 1).

Students get an Excel spreadsheet that contains the longitude, latitude, and depth of 6000 wells and a satellite image that shows the area of investigation. They use Arc GIS software to plot data on the satellite image (Fig. 2), or alternatively plot the data as a function of longitude and latitude as a bubble plot in Excel. They find that the distribution of As in many regions is very heterogeneous. They then select sub-regions and look at the depth distribution and find that often there is a gap in the depth population of wells which turns out to be due to a clay layer varying in thickness that separates the shallow aquifer from the deep aquifer. The depth distribution (Fig. 3) of As also shows a characteristic pattern with most of the elevated As concentrated in the top 30 meters.
Students then discuss remediation options, in particular the possibility of switching to neighboring wells and using deeper groundwater as an alternative source of drinking water. They find that in many regions there are safe wells within a few hundred m of the high As well. However, it is not clear how long these wells will remain low in dissolved As and there are social barriers as well to use the neighbors well. They then determine a depth below which As concentrations are low in their region and elevate the risk of using deeper groundwater for drinking water and irrigation. They find that personal use is resulting in only ~1cm year-1 of water use, while irrigation (~1 m year-1) would considerably lower the water table and potentially could contaminate the deeper aquifer as well. The conclusion is that if deeper groundwater is utilized its use should be limited to personal use.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Business and Communication
Chemistry
Earth and Space Science
Hydrology
Management
Physical Science
Political Science
Social Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/04/2019
Vostok Core and Milankovic Cycles Climate Applet
Unrestricted Use
CC BY
Rating
0.0 stars

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

Subject:
Agriculture and Natural Resources
Environmental Studies
Physical Science
Material Type:
Lesson
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Tom Whittaker
University of Wisconsin
Date Added:
03/09/2023