This task has students explore the relationship between the three parameters a, …
This task has students explore the relationship between the three parameters a, h, and k in the equation f(x)=a(x−h)2+k and the resulting graph. There are many possible approaches to solving each part of this problem, especially the first part. We outline some of them here (which overlap heavily in places), applied to the top left graph, and then only give the final answers in the solution provided.
This task requires students to determine whether a number is rational or …
This task requires students to determine whether a number is rational or irrational. The task assumes that students are able to express a given repeating decimal as a fraction.
This lesson unit is intended to help you assess how students reason …
This lesson unit is intended to help you assess how students reason about geometry and, in particular, how well they are able to: use facts about the angle sum and exterior angles of triangles to calculate missing angles; apply angle theorems to parallel lines cut by a transversal; interpret geometrical diagrams using mathematical properties to identify similarity of triangles.
In this task, students use trigonometric functions to model the movement of …
In this task, students use trigonometric functions to model the movement of a point around a wheel and, in the case of part (c), through space (F-TF.5). Students also interpret features of graphs in terms of the given real-world context (F-IF.4).
Objectives -Demonstrate to students the enormous amount of produce that is wasted …
Objectives -Demonstrate to students the enormous amount of produce that is wasted daily because they do not fit the aesthetic criteria of producers, retailers, and consumers. -Show students that fruits and vegetables that do not look “perfect” taste the same as ones you find in the store.
Build equivalent fractions with different denominators. Match shapes and numbers to earn …
Build equivalent fractions with different denominators. Match shapes and numbers to earn stars in the game. Challenge yourself on any level you like. Try to collect lots of stars!
Students learn about material balances, a fundamental concept of chemical engineering. They …
Students learn about material balances, a fundamental concept of chemical engineering. They use stoichiometry to predict the mass of carbon dioxide that escapes after reacting measured quantities of sodium bicarbonate with dilute acetic acid. Students then produce the reactions of the chemicals in a small reactor made from a plastic water bottle and balloon.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to interpret percent increase and decrease, and in particular, to identify and help students who have the following difficulties: translating between percents, decimals, and fractions; representing percent increase and decrease as multiplication; and recognizing the relationship between increases and decreases.
Students are asked to consider the expression that arises in physics as …
Students are asked to consider the expression that arises in physics as the combined resistance of two resistors in parallel. However, the context is not explicitly considered here. The task is good general preparation for problems more specifically aligned to either A-SSE.1 or A-SSE.2.
Students use scaling from real-world data to obtain an idea of the …
Students use scaling from real-world data to obtain an idea of the immense size of Mars in relation to the Earth and the Moon, as well as the distances between them. Students calculate dimensions of the scaled versions of the planets, and then use balloons to represent their relative sizes and locations.
An interactive applet and associated web page that demonstrate the inscribed angle …
An interactive applet and associated web page that demonstrate the inscribed angle of a circle - the angle subtended at the periphery by two points on the circle. The applet presents a circle with three points on it that can be dragged. The inscribed angle is shown and demonstrates that it is constant as the vertex is dragged. Links to other related topics such as Thales Theorem. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
This task is primarily for instructive purposes but can be used for …
This task is primarily for instructive purposes but can be used for assessment as well. Parts (a) and (b) are good applications of geometric constructions using a compass and could be used for assessment purposes but the process is a bit long since there are six triangles which need to be constructed.
This problem introduces the circumcenter of a triangle and shows how it …
This problem introduces the circumcenter of a triangle and shows how it can be used to inscribe the triangle in a circle. It also shows that there cannot be more than one circumcenter.
This task focuses on a remarkable fact which comes out of the …
This task focuses on a remarkable fact which comes out of the construction of the inscribed circle in a triangle: the angle bisectors of the three angles of triangle ABC all meet in a point.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to use geometric properties to solve problems. In particular, it will help you identify and help students who have difficulty: decomposing complex shapes into simpler ones in order to solve a problem; bringing together several geometric concepts to solve a problem; and finding the relationship between radii of inscribed and circumscribed circles of right triangles.
An interactive applet and associated web page that demonstrate the relationship of …
An interactive applet and associated web page that demonstrate the relationship of the interior and exterior angles of a polygon. The applet shows an irregular polygon where one vertex is draggable. As it is dragged the interior and exterior angles at that vertex are displayed, and a formula is continuously updated showing that they are supplementary. The tricky part is when the vertex is dragged inside the polygon making it concave. The applet shows how the relationship still holds provided you get the signs of the angles right. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.