Earth and Space Science Collection including Astronomy, Atmospheric Science, Geology, Geoscience, Hydrology, Oceanography, Physical Geography, and Space Science
Bug Hunt uses NetLogo software and simulates an insect population that is …
Bug Hunt uses NetLogo software and simulates an insect population that is preyed on by birds. There are six speeds of bugs from slow to fast and the bird tries to catch as many insects as possible in a certain amount of time. Students are able to see the results graphed as the average insect speed over time, the current bug population and the number of insects caught. There are two variations to try for the predator, one where the predator pursues the prey and one where the predator stays still and captures insects that pass nearby. In the first case the bird catches the slow insects and the faster ones survive, reproduce and pass genes on. The average speed of bug should increase over time. In the second case the faster bugs come near to the bird more often than the slow ones. The slow ones survive more, reproduce and pass their genes on.
"Build It Yourself: Satellite!" is an online Flash game hosted on the …
"Build It Yourself: Satellite!" is an online Flash game hosted on the James Webb Space Telescope website. The goal of the game is to explain the decision-making process of satellite design. The user can choose to build a "small," "medium," or "large" astronomy satellite. The user then selects science goals, wavelength, instruments, and optics. The satellite is then launched on the appropriate rocket (shown via an animation). Finally, the user is shown what their satellite might look like, as well as what kind of data it might collect, via examples from similar real-life satellites. Satellites range from small X-ray missions without optics (like the Rossi X-ray Timing Explorer) to large missions with segmented mirrors (like the James Webb Space Telescope).
Students wire up their own digital trumpets using a MaKey MaKey. They …
Students wire up their own digital trumpets using a MaKey MaKey. They learn the basics of wiring a breadboard and use the digital trumpets to count in the binary number system. Teams are challenged to play songs using the binary system and their trumpets, and then present them in a class concert.
Students create projects that introduce them to Arduino—a small device that can …
Students create projects that introduce them to Arduino—a small device that can be easily programmed to control and monitor a variety of external devices like LEDs and sensors. First they learn a few simple programming structures and commands to blink LEDs. Then they are given three challenges—to modify an LED blinking rate until it cannot be seen, to replicate a heartbeat pattern and to send Morse code messages. This activity prepares students to create more involved multiple-LED patterns in the Part 2 companion activity.
In the companion activity, students experimented with Arduino programming to blink a …
In the companion activity, students experimented with Arduino programming to blink a single LED. During this activity, students build on that experience as they learn about breadboards and how to hook up multiple LEDs and control them individually so that they can complete a variety of challenges to create fun patterns! To conclude, students apply the knowledge they have gained to create LED-based light sculptures.
Build Your Own Earth is a freely available web site to explore …
Build Your Own Earth is a freely available web site to explore the factors that affect Earth's climate. Climate model simulations reveal the annual distributions of 50 different quantities. An accompanying homework for undergraduates is included that could be adapted for other students.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students design and construct devices to trap insects that are present in …
Students design and construct devices to trap insects that are present in the area around the school. The objective is to ask the right design questions and conduct the right tests to determine if the traps work .
Student teams creatively construct mobiles using hangers and assorted materials and objects …
Student teams creatively construct mobiles using hangers and assorted materials and objects while exploring the principles of balance and center of mass. They build complex, free-hanging structures by balancing pieces with different lengths, weights, shapes and sizes.
Whether you want to light up a front step or a bathroom, …
Whether you want to light up a front step or a bathroom, it helps to have a light come on automatically when darkness falls. For this maker challenge, students create their own night-lights using Arduino microcontrollers, photocells and (supplied) code to sense light levels and turn on/off LEDs as they specify. As they build, test, and control these night-lights, they learn about voltage divider circuits and then experience the fundamental power of microcontrollers—controlling outputs (LEDs) based on sensor (photocell) input readings and if/then/else commands. Then they are challenged to personalize (and complicate) their night-lights—such as by using delays to change the LED blinking rate to reflect the amount of ambient light, or use many LEDs and several if/else statements with ranges to create a light meter. The possibilities are unlimited!
How can we design buildings to withstand an earthquake? This activity uses …
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students construct bird nests and birdhouses. They research birds of their choosing …
Students construct bird nests and birdhouses. They research birds of their choosing and then design houses that meet the birds' specific needs. It works well to conduct this activity in conjunction with a grades 9-12 woodshop class by partnering the older students with the younger students (but it is not required to do this in order to conduct the activity).
Bring the rainforest to life in your classroom! Give your students hands-on …
Bring the rainforest to life in your classroom! Give your students hands-on experiences that will build their understanding of the importance of tropical rainforests and the need for protecting these valuable ecosystems. Explore topics including the water cycle in the Amazon, the life cycle of rainforest plants, rainforest conservation challenges, and more. You can use this kit to prepare your students for a field trip to the Academy's Rainforest Exhibit. Or, if you can't make it to the Academy, use the kit on its own to bring the rainforest to you! This version of the rainforest kit is for grades 4 - 8.
Survey potential bridge sites, research bridge design, and select the right bridge …
Survey potential bridge sites, research bridge design, and select the right bridge for the right location in this interactive activity from the NOVA Web site. ***Access to Teacher's Domain content now requires free login to PBS Learning Media.
In this hands-on activity, students explore the electrical force that takes place …
In this hands-on activity, students explore the electrical force that takes place between two objects. Each student builds an electroscope and uses the device to draw conclusions about objects' charge intensity. Students also determine what factors influence electric force.
In this activity, learners consider the requirements for human life beyond Earth's …
In this activity, learners consider the requirements for human life beyond Earth's protection: air to breathe, plentiful food, shielding from ultraviolet light, power, etc. They then work in teams to design and construct a model of a space colony out of craft materials that would allow humans to survive the harsh environments of the Moon or Mars. Teams present their modules and colonies to one another and create a display for the library. This activity is part of Explore! To the Moon and Beyond! - developed specifically for use in libraries.
Lab 1: the students begin by describing on a worksheet their own …
Lab 1: the students begin by describing on a worksheet their own ideas of delta formation using concept sketches and written descriptions of the stages of formation, with only broad guidance from the instructor. They are also asked to describe the key features of their concept sketches, and to hypothesize how those features might develop (the processes). The students have all been exposed to deltas in Physical Geology, but likely only have rudimentary knowledge of them. Once they have completed the worksheet, the entire class moves to a lab with a stream table in it, preset to run a "model delta." The model has both a web cam and a time-lapse web cam set up over the table to record the development. The students help start the water flowing and the cameras recording, then watch as it develops over the next 2-3 days.
Lab 2: In the second lab, we use grain-size analysis of the stream-table delta as a means of testing some of their ideas from lab 1. The students as a class develop a strategy to sample the stream-table delta for grain size, using a laser grain-size analyzer. Each pair of students collect one sample, but are also asked to predict the changes in grain size distribution for samples elsewhere in the delta. The particle size analyzer rapidly provides results to the students near the end of lab.
Lab 3: the final lab is a field trip to a pair of gravel pits that expose the guts of two natural stranded deltas, including topset and foreset beds. The students are asked to assess the landforms on a topo map before arriving, and to describe the deposits at each site we visit. On the final writeup, the students need to synthesize all the elements of the three labs, along with input from our readings in the textbook (Easterbrook) and McPhee's "Control of Nature."��
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.