Updating search results...

Life Science

Collection of Life Science Materials. Including Anatomy/Physiology, Biology, Botany, Ecology, Genetics, and Zoology resources. 

4305 affiliated resources

Search Resources

View
Selected filters:
Data Filtering and Noise Reduction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lab utilizes the computer program, Excel. In this exercise students will generate synthetic data sets based on a simplified model of daily high temperatures in Boone, NC and apply several filtering techniques to the data. A key to this lab is that the students must use Excel in an efficient manner; otherwise, this exercise may take a long time to complete. Thus, the synthetic data sets are intentionally large in size. The overarching purpose of this lab is two-fold: 1) Perform some quantitative data processing and determine the effectiveness of several types of simple mathematical noise filters, and 2) Make a professional interpretation and recommendation based on quantitative results.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/01/2019
Data Wrangling and Processing for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn how to use command-line tools to perform quality control, align reads to a reference genome, and identify and visualize between-sample variation. A lot of genomics analysis is done using command-line tools for three reasons: 1) you will often be working with a large number of files, and working through the command-line rather than through a graphical user interface (GUI) allows you to automate repetitive tasks, 2) you will often need more compute power than is available on your personal computer, and connecting to and interacting with remote computers requires a command-line interface, and 3) you will often need to customize your analyses, and command-line tools often enable more customization than the corresponding GUI tools (if in fact a GUI tool even exists). In a previous lesson, you learned how to use the bash shell to interact with your computer through a command line interface. In this lesson, you will be applying this new knowledge to carry out a common genomics workflow - identifying variants among sequencing samples taken from multiple individuals within a population. We will be starting with a set of sequenced reads (.fastq files), performing some quality control steps, aligning those reads to a reference genome, and ending by identifying and visualizing variations among these samples. As you progress through this lesson, keep in mind that, even if you aren’t going to be doing this same workflow in your research, you will be learning some very important lessons about using command-line bioinformatic tools. What you learn here will enable you to use a variety of bioinformatic tools with confidence and greatly enhance your research efficiency and productivity.

Subject:
Computer Science
Computer, Networking and Telecommunications Systems
Genetics
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Date Added:
04/11/2023
Dating Students: Relative vs. Numerical Time
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this lab, students are introduced to the difference between relative and absolute dating, using the students themselves as the material to be ordered. Initially, the students are asked to develop physical clues to put themselves in order from youngest to oldest (exposing the inferences we make unconsciously about people's ages), and this will be refined/modified using a list of current events from an appropriate historical period that more and more of the students will remember, depending on their age (among other variables). Absolute age is introduced by having the students order themselves by birth decade, year, month, and day, and comparing the absolute age order to the order worked out in the relative-dating exercise, with a discussion of dating precision and accuracy.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Computer, Networking and Telecommunications Systems
Earth and Space Science
Environmental Science
Geology
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/10/2019
A Day Without Agriculture: Lesson 1 Exposure Activity, Unit 1 Introduction to Agriculture, DIGS AmeriCorps Curriculum CSU
Read the Fine Print
Educational Use
Rating
0.0 stars

A Day Without Agriculture. This is the Lesson 1 Exposure Activity, from Unit 1 Introduction to Agriculture, from the DIGS (Developing Individuals, Growing Stewards) AmeriCorps Curriculum from CSU. The curriculum focuses on introducing students in grades 3-5 to Colorado agriculture, industry and environmental issues. The curriculum is matched to State Standards 2021. The curriculum upon request. Visit: https://engagement.colostate.edu/programs-old/developing-individuals-growing-stewards/

Subject:
Agriculture
Agriculture and Natural Resources
Agriculture, Natural Resources and Energy
Animal Science
Applied Science
Botany
Career and Technical Education
Comprehensive Health and Physical Education
Ecology
Economics
Environmental Science
Environmental Studies
Life Science
Nutrition
Plant Science
Social Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Lesson
Lesson Plan
Provider:
CSU Extension Office
Provider Set:
AmeriCorps
Date Added:
02/24/2023
Day and Night in the World
Unrestricted Use
CC BY
Rating
0.0 stars

This activity allows pupils to learn the difference between diurnal and nocturnal animals, understand that when it is day here, it is night on the other side of the world, and that it is light when the Sun comes up and it is dark when the Sun goes down. At the end, pupils build a model of the Earth and can experiment with day and night.

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
International Astronomical Union
Provider Set:
astroEDU
Date Added:
01/01/2016
The Day the Mesozoic Died
Read the Fine Print
Educational Use
Rating
0.0 stars

This three-act film tells the story of the detective work that solved the mystery of what caused the disappearance of the dinosaurs at the end of the Cretaceous period. Shot on location in Italy, Spain, Texas, Colorado, and North Dakota, the film traces the uncovering of key clues that led to the discovery that an asteroid struck the Earth 66 million years ago, triggering a mass extinction of animals, plants, and microorganisms. Science practices in geology, physics, biology, chemistry and paleontology all contributed to the solution to this compelling mystery. Lesson plans are included that have students identify evidence and construct an explanation to tie it together. Summary questions are included at the end and a class discussion is recommended. (This activity will be the only one evaluated in this review.) Another resource is “Finding the Crater” where students “visit” different K-T boundary sites. There are also lessons where students analyze various characteristics of the asteroid such as its size and energy, chemical data about the asteroid, and the iridium fallout from an asteroid impact. A hands-on activity where students study the differences in foraminifera fossils below and above the K-T boundary is also included as well as an article that outlines more details about each of the discoveries covered in the film. You can view the film on the website or HHMI will send you a free DVD. Lesson plans including teacher notes and a student handout can be found at http://www.hhmi.org/biointeractive/following-trail-evidence.

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Mary Colvard
Date Added:
10/20/2023
Deciphering Mineral Structure Diagrams
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students compare mineral structures shown in ball-and-stick, space filling, and polyhedral diagrams.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/01/2022
Deciphering complex fluid-mineral interactions in the palm of your hand
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Copper is an element that is essential to our technology and to our standard of living. Commonly, the copper is extracted from a variety of copper-bearing minerals that occur in veins. These fossilized fluid pathways record a complex set of geologic processes with non-linear couplings that are the products of hydrothermal activity associated with igneous intrusions (e.g. heat transport, mechanical fracture, mineral precipitation, permeability changes). By carefully examining a rock slab and its mineralogy, one can decipher the series of interrelated processes and their resultant impact on the final product.

Students set about to determine the relative age of veins by visual examination of the rock slab provided. Several generations of veins are recorded by different colors representing different minerals. Using cross-cutting relationships, they list the veins from oldest to youngest. Based on their color, they determine the sequence of minerals that fill veins. This provides an opportunity to review why color can be used to identify some minerals but not others. Once minerals are identified, their ideal chemical formula allows the percent copper in the mineral to be determined as well as the additional elements that must be present to form the mineral. The consequent change in mineral chemistry can be linked to the alterations in fluids flowing through the fractures by analysis of fluid-mineral equilibria on activity-activity (a-a) diagrams. For the more advanced classes, relevant thermodynamic data can be provided and students can write hydrolysis reactions and calculate the (a-a) diagram themselves.

Interpretation of the geologic history begins with the matrix and initial conditions and follows through rock fracture, fluid flow, mineral precipitation, evolving fluid composition, fracture sealing, pore-fluid pressure buildup, fracture, precipitation, etc. in a series of feedbacks. A feedback diagram can be provided and used as a base-map for interpretation not only of the sequence but changes to each reservoir, or students can be asked to draw the series of events and their reservoirs with the mechanisms of change. In the end, students understand the complex series of geologic processes that must come together in space and time to produce an ore-deposit that can be mined for our use. They also wrestle with the complications of reading the rock record and with the ambiguity of interpreting the interaction of various mechanisms that control the final product.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Chemistry
Earth and Space Science
Geology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/13/2019
Deciviews from Look Rock, Great Smoky Mountains National Park: How Hazy is it?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the haze index and standard visual range from concentrations of particulate matter.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Atmospheric Science
Biology
Earth and Space Science
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
07/31/2020
Decomposition Mission
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the fascinating and complex process of decomposition and lay the foundation for deeper understanding of concepts related to matter and energy transfer in ecosystems. Through exploration and discussion, students go beyond simple definitions. Instead, students discover key characteristics of decomposition as they struggle with creating a sequence for decomposing wood and leaves. They learn the difference between physical decomposition and chemical decomposition and that many things contribute to decomposition, but certain organisms are classified as decomposers. They also search for and discuss evidence of decomposers, make model diagrams to further develop their ideas about the process of decomposition, and discuss decomposition and its role in the cycling of matter. Finally, students are challenged to recognize the evidence and impact of decomposition in the ecosystems they explore.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Beetles: Science and Teaching for Field Instructors
Date Added:
04/27/2023
Deep Sea Microbes Jigsaw
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity will help students to explore characteristics of microbes that live in the deep sea. This activity can be conducted as a jigsaw or research project, and can be used with face-to-face, remote, and hybrid students.














Provenance: Beverly Owens, Cleveland Early College High School
Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Life Science
Oceanography
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/03/2022
Deep Sea Microbes Playlist
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a Google Slide playlist that will introduce students to microbes that can be found in deep sea sediments, and what roles they play in their environment. This playlist is suitable for use in remote, hybrid, or in-person instruction and can easily be added to a Learning Management System.














Provenance: Molly Ludwick, Kings Mountain Middle School
Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Life Science
Oceanography
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/04/2022
A Deeper Look Into Seeds
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Developed for second grade. Students will: use their sense of touch and sight to discover differences between several types of seeds; discuss why seeds come in different shapes and sizes; make connections between art and science; discuss the growth process of a seed; discuss how different seeds are used in different products.Biology In Elementary Schools is a Saint Michael's College student project. The teaching ideas on this page have been found, refined, and developed by students in a college-level course on the teaching of biology at the elementary level. Unless otherwise noted, the lesson plans have been tried at least once by students from our partner schools. This wiki has been established to share ideas about teaching biology in elementary schools. The motivation behind the creation of this page is twofold: 1. to provide an outlet for the teaching ideas of a group of college educators participating in a workshop-style course; 2. to provide a space where anyone else interested in this topic can place their ideas.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
WikiEducator
Date Added:
04/07/2023
Deep time - what is your metaphor?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Appreciating the depth of time is a bit like trying to understand the national debt -- it is easy to rattle off the number, but more difficult to appreciate what it means. Several popular writers have tried to convey the depth of time by incoporating one major (and important!) signpost in their scales: the first historical records of humans on the planet. Mark Twain famously referred to human history as the "skin of paint" at the summit of the Eiffel Tower, and John McPhee the "stroke of a medium-grained nail file" on the middle nail of an outstretched arm.












Eiffel Tower


Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.












Vitruvian man


Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.

I would like for you to evaluate these two metaphors for accuracy. How close were Twain and McPhee to appropriately contexualizing human existence in geological time? Use the pdf's of Twain's and McPhee's prose and what you know from class lectures to accomplish the following goals.

(1) Evaluate whether McPhee's and Twain's metaphors are appropriately scaled -- i.e., do their metaphors correctly depict the age of the earth relative to human history? How about if we incorporate the fossil record of humans?

(2) Create your own appropriately scaled metaphor. Add in at least three other "signposts", either biological or geological, into your metaphor and explain why you chose them.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/24/2019
Deep water circulation and chemistry jigsaw
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is designed to introduce students to the way in which thermohaline circulation and the biological pump influence the distribution of nutrients, oxygen, carbon, and radiocarbon in the Atlantic vs. Pacific Oceans.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Chemistry
Earth and Space Science
Environmental Science
Life Science
Oceanography
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/29/2019
Deer Mouse Fur Color: From the Field to the Beach
Read the Fine Print
Educational Use
Rating
0.0 stars

In this sequence of lessons, students explore the deer mouse and its fur color and how it has evolved over time in different habitats. Students engage in the practices of science using a series of interactive computer simulations to create model(s) of evolutionary change across levels of biological organization, from molecules and cells to organisms and populations. NOTE: This sequence is designed specifically for use on touchscreen devices.

Subject:
Life Science
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium
Date Added:
04/14/2023
The Defense and Offense of the Mymorapelta Dinosaur
Read the Fine Print
Educational Use
Rating
0.0 stars

Dinosaur Journey is part of the Mueums of Western Colorado. Dr. Julia McHugh from Museums of Western Colorado’s Dinosaur Journey, talks about the defense and offense of the Mymorapelta dinosaur!

Subject:
Anatomy/Physiology
Ancient History
Earth and Space Science
Geology
Geoscience
History
Life Science
Paleontology
Physical Geography
Physical Science
U.S. History
Material Type:
Lecture
Provider:
Museums of Western Colorado
Provider Set:
Dinosaur Journey
Date Added:
02/06/2023
Deformation Mechanisms and Microstructures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students match microstructures to the deformation mechanisms by which they form; compare pairs of photomicrographs chosen to highlight key differences between some common microstructures; and complete a self-quiz in which they identify microstructures and infer deformation mechanisms from photomicrographs.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/01/2022
Delay Insentitive Circuits -- Structures, Semantics, and Strategies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The design of concurrent distributed hardware systems is a major challenge for engineers today and is bound to escalate in the future, but engineering education continues to emphasize traditional tools of logic design that are just not up to the job. For engineers tackling realistic projects, improvised attempts at synchronization across multiple clock domains have long been a fact of life. Prone to hazards and metastability, these ad hoc interfaces could well be the least trustworthy aspects of a system, and typically also the least able to benefit from any readily familiar textbook techniques of analysis or verification.

Progress in the long run depends on a change of tactics. Instead of the customary but inevitably losing battle to describe complex systems in terms of their stepwise time evolution, taking their causal relationships and handshaking protocols as a starting point cuts to the chase by putting the emphasis where it belongs. This way of thinking may call for setting aside a hard earned legacy of practice and experience, but it leads ultimately to a more robust and scalable methodology.

Delay insensitive circuits rely on local coordination and control from the ground up. The most remarkable consequence of adhering to this course is that circuits can get useful things done without any clock distribution network whatsoever. Because a handshake acknowledgment concludes each interaction among primitive components and higher level subsystems alike, a clock pulse to mark them would be superfluous. This effect can bring a welcome relief to projects whose timing infrastructure would otherwise tend to create more problems than it solves.

The theory of delay insensitive circuits is not new but has not yet attracted much attention outside of its research community. At best ignored and at worst discouraged in standard curricula, this topic until now has been accessible only by navigating a sea of conference papers and journal articles, some of them paywalled. Popular misconceptions and differing conventions about terminology and notation have posed further barriers to entry. To address this need, this book presents a unified account of delay insensitive circuits from first principles to cutting edge concepts, subject only to an undergraduate-level understanding of discrete math. In an approachable tutorial format with numerous illustrations, exercises, and over three hundred references, it guides an engineering professional or advanced student towards proficiency in this extensive field.

Subject:
Applied Science
Career and Technical Education
Computer Science
Computer, Networking and Telecommunications Systems
Electronic Technology
Engineering
Material Type:
Textbook
Author:
Dennis Furey
Date Added:
04/11/2023