After exploring the “Case of the Disappearing Log,” students will probably never …
After exploring the “Case of the Disappearing Log,” students will probably never look at a log the same way again. In this activity, students assume the roles of detectives faced with a nature mystery. First, they explore a decomposing log and look for evidence of how the log is changing. They make possible explanations for what might be causing log to disappear. Students then learn about common “suspects”—organisms that decompose wood—and the signature evidence they each leave behind. Students use a Disappearing Log Key to identify which organisms might have left behind which evidence, and use this information to make explanations about what has happened to the log since it was a tree. Finally, students learn that the log isn’t really disappearing, it’s turning into the invisible gases that are part of the cycling of matter in all ecosystems.
This video will help students, particularly those not in AP-level classes, have …
This video will help students, particularly those not in AP-level classes, have a practical application for knowing about the major divisions between plants, particularly about the details of plant anatomy and reproduction. Students will be able to :Identify the major evolutionary innovations that separate plant divisions, and classify plants as belonging to one of those divisions based on phenotypic differences in plants. Classify plants by their pollen dispersal methods using pollen dispersal mapping, and justify the location of a _crime scene_ using map analysis. Analyze and present their analysis of banding patterns from DNA fingerprinting done using plants in a forensic context.
Students use phylogenetic analysis to identify farmed Atlantic salmon mislabeled as wild …
Students use phylogenetic analysis to identify farmed Atlantic salmon mislabeled as wild Pacific salmon by local stores and suppliers.
This project allows students to apply molecular methods such as polymerase chain reaction (PCR) and DNA sequencing to a real- world issue.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students start this exercise using topographic maps of an area recently visited …
Students start this exercise using topographic maps of an area recently visited on a field trip to calculate and consider stream gradient of a major river south of Buffalo, NY. The activity then changes gears to have students work with discharge measurements from this stream. They use these measurements to plot and evaluate a few hydrographs which are used to compare how discharge in this stream can be used to consider how much precipitation was received in a certain year. In this lab, students practice mathematically calculating geomorphic properties of a stream, plotting data, and comparing topographic maps to what they observed on the recent field trip. Designed for a geomorphology course Uses online and/or real-time data Addresses student fear of quantitative aspect and/or inadequate quantitative skills
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Bycatch can be defined as the act of unintentionally catching certain living …
Bycatch can be defined as the act of unintentionally catching certain living creatures using fishing gear. A bycatched species is distinguished from a target species (the animal the gear is intended to catch) because it is not sold or used. Marine mammals (whales, dolphins, porpoises), seabirds, sea turtles and unwanted or undersized fish are some examples of animals caught as by-catch The incidental capture of these animals can significantly reduce their populations. The most well known example of by-catch may be the unintentional mortality of spotted and spinner dolphins in the tuna fishing industry. "Dolphin-Safe" tuna was a result of this interaction (Be prepared to discuss how this came about with students, as it is something close to their daily lives). One important aspect to consider when discussing this issue is that laws protect some of the animals caught as by-catch (Marine Mammal Protection Act and Endangered Species Act). In this lesson, students will first be shown pictures of entangled marine animals and will discuss the definition of by-catch This will lead to discussions on why by-catching exists, how it impacts specific animals as well as humans, whether the students believe it is an important issue, and how by-catch can be reduced.
In this lesson, the students look at the components of cells and …
In this lesson, the students look at the components of cells and their functions. The lesson focuses on the difference between prokaryotic and eukaryotic cells. Each part of the cell performs a specific function that is vital for the cell's survival. Bacteria are single-celled organisms that are very important to engineers. Engineers can use bacteria to break down toxic materials in a process called bioremediation, and they can also kill or disable harmful bacteria through disinfection.
Students color-code a schematic of a cell and its cell membrane structures. …
Students color-code a schematic of a cell and its cell membrane structures. Then they complete the "Build-a-Membrane" activity found at http://learn.genetics.utah.edu. This reinforces their understanding of the structure and function of animal cells, and shows them the importance of being able to construct a tangible model of something that is otherwise difficult to see.
Students learn about the different structures that comprise cell membranes, fulfilling part …
Students learn about the different structures that comprise cell membranes, fulfilling part of the Research and Revise stages of the legacy cycle. They view online animations of cell membrane dynamics (links provided). Then they observe three teacher demonstrations that illustrate diffusion and osmosis concepts, as well as the effect of movement through a semi-permeable membrane using Lugol's solution.
Use your cell phone to explore the mini-scopic world. Open your eyes …
Use your cell phone to explore the mini-scopic world. Open your eyes to the amazing world of the ultra-tiny when you convert your cell phone into a portable, picture-taking Miniscope using a simple plastic lens from a laser pointer.
In this unit, students look at the components of cells and their …
In this unit, students look at the components of cells and their functions and discover the controversy behind stem cell research. The first lesson focuses on the difference between prokaryotic and eukaryotic cells. In the second lesson, students learn about the basics of cellular respiration. They also learn about the application of cellular respiration to engineering and bioremediation. The third lesson continues students' education on cells in the human body and how (and why) engineers are involved in the research of stem cell behavior.
This textbook was written for collegiate Cell and Molecular Biology courses and …
This textbook was written for collegiate Cell and Molecular Biology courses and may be appropriate at both an introductory level and also as a resource for more advanced courses.
Anatomy and Physiology students must know the basics of cellular metabolism. This …
Anatomy and Physiology students must know the basics of cellular metabolism. This is an introduction to cellular metabolism.
Lesson 1 in our Cellular Metabolism For Anatomy and Physiology series. This is part of our Anatomy and Physiology lecture series.
If this video helps you please be sure to LST -like subscribe and tell your friends. Your support help us make more videos. For the complete series please visit http://mrfordsclass.net/
We introduce the general formula for cellular respiration as well as cover …
We introduce the general formula for cellular respiration as well as cover the difference between aerobic and anaerobic respiration.
Lesson 2 in our Cellular Metabolism For Anatomy and Physiology series. This is part of our Anatomy and Physiology lecture series.
If this video helps you please be sure to LST -like subscribe and tell your friends. Your support help us make more videos. For the complete series please visit http://mrfordsclass.net/
Cellular respiration is the process by which our bodies convert glucose from …
Cellular respiration is the process by which our bodies convert glucose from food into energy in the form of ATP (adenosine triphosphate). Start by exploring the ATP molecule in 3D, then use molecular models to take a step-by-step tour of the chemical reactants and products in the complex biological processes of glycolysis, the Krebs cycle, the Electron Transport Chain, and ATP synthesis. Follow atoms as they rearrange and become parts of other molecules and witness the production of high-energy ATP molecules.
In this lesson, students learn about the basics of cellular respiration. They …
In this lesson, students learn about the basics of cellular respiration. They also learn about the application of cellular respiration to engineering and bioremediation. And, students are introduced to the process of bioremediation and several examples of how bioremediation is used during the cleanup of environmental contaminants.
Every cell in your body needs to take in nutrients, oxygen, and …
Every cell in your body needs to take in nutrients, oxygen, and raw materials and export wastes and other substances—but it’s not just a random traffic jam! A cell membrane (also called a plasma membrane) regulates what comes in and what goes out. Explore the properties of soap films and relate them to the properties of plasma membranes and the mechanics of transport across membranes.
Two or three weeks of the course are dedicated to studying diagenesis. …
Two or three weeks of the course are dedicated to studying diagenesis. Lectures start with a general definition of diagenesis, the range of conditions under which it occurs, and examples of diverse diagenetic environments and features. I use rice crispy cereal and rice crispy treats to introduce cement (the marshmellow is the cement that "glues" the rice krispies together). I also incorporate basic hydrogeology to show how pores filled with (or partially filled with) groundwater provide both the space and the material for cementation. As part of this lecture, I show the students various rock samples and photomicrographs in which they can see cement examples. I outline the different cement minerals and shapes and how they can be used to interpret past diagenetic conditions (eg., gravitational "pendant" calcite cements indicate that the host sediment was once in a vadose zone with groundwater rich in calcium and carbonate). I also discuss types of pores during these lectures and the ways that pores form. We also discuss criteria for recognizing cements. After two one-hour lectures about cements, we have a lab exercise in which the students are given ~10 samples (including hand samples and thin sections) and asked to sketch and describe the cement types. The next one-hour lecture focuses on neomorphic processes and their products, including replacement, recrystallization, and polymorphic transition. As part of the lecture, we look at photomicrographs and hand samples that illstrate various neomorphic features, such as replacement dolomite and replacement chert. We establish criteria for distinguishing cements from neomorphic fabrics. This lecture is followed by a lab exercise that presents the students with ~10 rocks and thin sections and asks them to sketch and identify neomorphic fabrics. This lab is follwed by another one-hour lecture on compaction features, dissolution evidence, and determining paragentic sequences. If I am short on time, that is all I do for diagenesis. However, ideally, I continue with a lecture focused on the "dolomite problem" and some case studies of other types of diagenesis, as well as a third lab assignment that combines cementation, neomorphism, compaction, dissolution, and paragenetic sequences. As part of this section, I also try to incorporate examples of methods other than petrology (eg., fluid inclusion studies, stable isotope studies, dating) that are used for diagenetic studies. Later in the course, we take several field trips in which the students examine diagenetic features.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Studying rock types, weathering processes and human history in a cemetery. (Note: …
Studying rock types, weathering processes and human history in a cemetery.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this activity, students view a Quicktime video animation based on data …
In this activity, students view a Quicktime video animation based on data from the North American Volcanic and Intrusive Rock Database (NAVDAT) to learn about the history of volcanism in the western U.S. during the last 65 million years. Students are guided through the complex data-rich animation with a series of instructions and study questions which highlight time-space-composition relationships and link to plate tectonics.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.