Students become product engineers in a bouncy ball factory as they design …
Students become product engineers in a bouncy ball factory as they design and prototype a polymer bouncy ball that meets specific requirements: must be spherical in shape, cannot disintegrate when thrown on the ground, and, of course, must bounce. Along with these design elements, students can build (with teacher assistance) a “shadow box” that helps measure the contact angle of the polymer that provides data on how to iterate. In addition, students must consider the aesthetics of their bouncy balls for customer approval and marketing purposes. Using the engineering design process, students design and create bouncy balls from polymers to create a fun, exciting toy for children.
Students investigate whether a bowling ball will float or sink in an …
Students investigate whether a bowling ball will float or sink in an aquarium of water after measuring the ball and determining the density. This is meant to be an investigative inquiry of the concepts of density and significant figures.
Students investigate whether a bowling ball will float or sink in an …
Students investigate whether a bowling ball will float or sink in an aquarium of water after measuring the ball and determining the density. This is meant to be an investigative inquiry of the concepts of density and significant figures.
Students find the volume and surface area of a rectangular box (e.g., …
Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things. Students then consider why consumer goods generally aren't packaged in cube-shaped boxes, even though they would require less material to produce and ultimately, less waste to discard. To display their findings, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. The activities involved provide valuable experience in problem solving with spatial-visual relationships.
To display the results from the previous activity, each student designs and …
To display the results from the previous activity, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. They problem solve and apply their understanding of see-saws and lever systems to create balanced mobiles.
empty (Note: this resource was added to OER Commons as part of …
empty
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Watch water boil at room temperature. The temperature at which water boils …
Watch water boil at room temperature. The temperature at which water boils depends on pressure. You can demonstrate this by dramatically lowering the pressure on a water-filled plastic syringe at room temperature.
Students are taught how to use FossilPlot software in the lab prior …
Students are taught how to use FossilPlot software in the lab prior to this exercise. Students work individual to work through the short exercise, handing in a copy of the diversity graphs for the brachiopod orders (which will be tested in the following midterm) and a completed worksheet. The exercise reinforces the main functions of FossilPlot and addresses basic concepts on diversity and biostratigraphy. Once the assignments are collected and graded, we discuss the outcomes of the exercise in class.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This task provides an exploration of a quadratic equation by descriptive, numerical, …
This task provides an exploration of a quadratic equation by descriptive, numerical, graphical, and algebraic techniques. Based on its real-world applicability, teachers could use the task as a way to introduce and motivate algebraic techniques like completing the square, en route to a derivation of the quadratic formula.
Students become novice lexicographers as they explore recent new entries to the …
Students become novice lexicographers as they explore recent new entries to the dictionary, learn the process of writing entries for the Oxford English Dictionary, and write a new entry themselves.
Construct a protein through cereal additions. Model the central dogma of molecular …
Construct a protein through cereal additions. Model the central dogma of molecular biology by constructing a colorful chain using a simple code (and some delicious cereal).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.