Updating search results...

Search Resources

999 Results

View
Selected filters:
  • Geology
Unit 1: Data Set Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students will be introduced to different data types used in the geosciences and other disciplines to understand environmental problems. The instructor will discuss the difference between qualitative and quantitative. Then, students will be given data sets related to water in Phoenix, Arizona. Students will work in groups of two to five to categorize different data sets as qualitative or quantitative and to reflect on their emotive responses to different data. The session ends with a discussion about the potential uses of these various data sets in decision-making around water in Phoenix, and uses this to foster a discussion about the ways in which different data sources lend insight into complex system problems.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Social Science
Sociology
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
04/22/2021
Unit 1: Earthquake!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this opening unit, students develop the societal context for understanding earthquake hazards using as a case study the 2011 Tohoku, Japan, earthquake. It starts with a short homework "scavenger hunt" in which students find a compelling video and information about the earthquake. In class, they share some of what they have found and then engage in a series of think-pair-share exercises to investigate both the societal and scientific data about the earthquake.

Show more about Online Teaching suggestions
Hide
Online-ready: This opening class discussion about earthquakes and societal impacts could easily be converted to an online discussion format.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Economics
Environmental Studies
Geology
Life Science
Social Science
Material Type:
Activity/Lab
Case Study
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu) Phil Resor, Wesleyan University (presor@wesleyan.edu)
Date Added:
02/02/2022
Unit 1: Energy, Space, and Earth's Effective Temperature
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit is designed to engage students by introducing them to patterns in recent climate and investigating possible reasons for recent changes. Students work in small groups to plot and analyze real-world temperature data covering a decade, and use that information to make predictions about future climatic trends. Whole-class discussions illustrate the differences between short- and long-term trends. Students also analyze graphs of solar irradiance to begin to determine reasons for the observed increase in temperature, setting the stage for Unit 2, which examines the role of the atmosphere in controlling Earth's surface temperature.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Allison Dunn
Bob Mackay
Phil Resor
Date Added:
07/07/2021
Unit 1: Exploring the Reservoirs and Pathways and Methods to Measure the Hydrologic Cycle
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How does water move throughout the Earth system? How do scientists measure the amount of water that moves through these pathways? This unit provides an alternative way for students to learn the major components of Earth's water cycle, which includes actively thinking about how we measure the water system. In this unit, students annotate a schematic diagram to identify the major reservoirs and fluxes in the hydrosphere. They also work in teams of different "experts" to identify traditional and geodetic techniques that are used to measure components of the hydrosphere and the changes over time. Using their recently acquired knowledge about these techniques, they make inferences about which methods are best for measuring different components of the hydrosphere. Measurement methods include stream gauges, groundwater wells, snow pillows, vertical GPS changes, reflection GPS for snow depth, and GRACE satellite (Gravity Recovery and Climate Experiment).

Show more about Online Teaching suggestions
Hide
Online-adaptable: Main exercise is a jigsawactivity that could be done in an online course but student groups with online collaboration (probably synchronous) would need to be organized OR the exercise would need to be adapted away from group format.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Hydrology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Jon Harvey (Fort Lewis College) and Becca Walker (Mt. San Antonio College)
Date Added:
09/26/2022
Unit 1: Foundational Concepts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 1 introduces foundational concepts in geoscience, emergency management, and political science that are critical for developing a systems thinking approach and for achieving the learning objectives in the storm module. More specifically, within Unit 1, students acquire a vocabulary related to storm systems and risk, engage in practical exercises on event probability and frequency, and complete written activities and oral presentations that reinforce these concepts, using their own community and two case studies as examples. The activities include: a pre-and post-Unit survey on natural hazard risk, an optional concept map exercise to identify associations of risk in major storms, an exercise on probability and frequency of natural hazards in general and major storms in particular, an exercise using hazard vulnerability analysis (HVA) and the HVA's findings, and a synthesis assignment that requires analysis of an assigned hazard mitigation plan (HMP) and development of a proposal to improve mitigation plans.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Communication
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Health, Medicine and Nursing
Life Science
Mathematics
Measurement and Data
Political Science
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Lisa Doner
Lorraine Motola
Patricia Stapleton
Date Added:
04/05/2022
Unit 1: Hazards, vulnerability and risk
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will identify and apply credible geologic and social science data sets to identify local hazards and vulnerable groups and structures, and assess risk for their community.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Social Science
Sociology
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
11/20/2021
Unit 1: Identifying Misconceptions & Logical Fallacies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will identify how they, as individuals, think about climate science and explore common perceptions and misconceptions that exist about climate science. The activities within this unit incorporate individual reflection by students, small group work, and larger group/class discussions, and endeavor for students to learn how to discern true and untrue statements using logic and fact. Students are presented with various statements about climate science and are tasked with determining whether these statements are factually true and whether they are logically valid. We recognize that students may have limited background factual knowledge in climate science before starting these activities, so some exercises are intended more as a way for students to evaluate how they think about climate science and how to create logically valid scientific statements (i.e., how to think and talk like a scientist). By learning how to identify logically and factually true and untrue statements, students will, by the end of this unit, be able to create and evaluate statements about climate science (even with limited factual knowledge) and critique common misconceptions about climate science.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/15/2020
Unit 1: "If an earthquake happens in the desert..."
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit initiates a discussion about the importance of recognizing faults in relation to modern societal infrastructure. Students consider the types of infrastructure necessary to support a modern lifestyle, especially for people living in population centers. Students also explore how key infrastructure such as aqueducts, power lines, or oil/gas pipelines, which traverse large distances, may also be susceptible to damage by earthquakes well away from the population centers. Additionally, earthquakes can occur in regions where none have occurred in recorded history. The ability to recognize and evaluate the potential for damage to key infrastructure that are near or cross a fault can be used, in turn, to classify and ultimately predict the most and least likely locations for damage, and to make suggestions for minimizing future impacts.

Show more about Online Teaching suggestions
Hide
Online-ready: The exercise is electronic and could be done individually or in small online groups (using the Google Earth rather than printable files). Lecture can be done in synchronous or asynchronous online format, although synchronous would allow better discussions of societal impacts of earthquakes.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Engineering
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Bruce Douglas
Gareth Funning
Date Added:
09/26/2022
Unit 1: Introduction to Soils and Society
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students engage in a scaffolded class discussion designed to encourage students to move from a broad focus on science relevancy to locally important societal issues relevant to soils. They then relate what they learned during this discussion to the major assessment of this module, the Soils, Systems, and Society Kit (the Kit) assignment, and begin exploring potential focal issues for this assignment. Lastly, the unit introduces concept mapping, and pre-service teachers create a starting concept map for Earth systems, which is a required element of the Kit.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Gary Varrella
Jennifer Dechaine
Kathryn Baldwin
Rodger Hauge
Date Added:
06/12/2022
Unit 1: Introduction to Systems Thinking �� What is a System?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit introduces systems and systems thinking. The unit is easily adaptable to any course and includes an introduction of terminology, motivation for using systems thinking, and practice reading, as well as interpreting and evaluating systems diagrams. Note that an Internet connection and speakers are required to play the audio file in Part 3.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/08/2022
Unit 1: Introduction to the Geologic Timeline & Mass Extinctions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students will identify mass extinctions as paleontologists have done and recognize and understand the "pull of the recent," that is, the human tendency to know more about events closer to the present. Students prepare by reading an article prior to class that describes mass extinctions. At the beginning of class, students place historical events along a physical model of the geologic timescale. Next, they examine a diagram showing changes in biodiversity across the last 542 million years and identify patterns in those data. Students and the instructor then finish class by discussing that although fossils (and rocks) are critical for explaining the present and predicting the future, their mechanisms of preservation biases our understanding of Earth's past.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Education
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
10/22/2021
Unit 1: Introduction to the hydrologic cycle and stakeholder analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit introduces the hydrological cycle to provide context for the module as a whole. It particularly focuses on those portions of the hydrological cycle that take place on land and that form the basis for water that is used by society. Students conduct a stakeholder analysis to better understand societal issues around water. Then the scientific exercise of the unit emphasizes quantitative approaches to describing the critical portions that humans have access to: surface water and shallow ground water. Students calculate residence times and fluxes between reservoirs and track water particles on an annual basis. They also explore available data sets for specific reservoirs such as snowpack and rivers.

Show more about Online Teaching suggestions
Hide
Online-adaptable: This exercise could be converted to online whole-class discussions/lectures and a breakout group activity. Would be best done synchronously.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Business and Communication
Communication
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Hydrology
Life Science
Management
Mathematics
Measurement and Data
Political Science
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/26/2022
Unit 1. Module Introduction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 1 introduces the Water Sustainability in Cities Module. The content establishes the foundation definitions of sustainability, sustainable development, and water sustainability in cities. Key sustainability concepts are introduced and examples provided for water in cities. Students are engaged in activities to help them explore the definitions of water sustainability in cities and apply systems thinking. The unit materials are designed with flexibility in mind such that instructors can adapt the module to their own courses and context. The unit may also be used on its own to provide an introductory water sustainability lesson without using other units in the module.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Engineering
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
11/15/2021
Unit 1: Ocean Circulation and Health
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students explore the role of ocean circulation in climate modification and bioproductivity. The activities require students to interpret the effect of horizontal and vertical seawater movement on heat distribution, carbon dioxide dissolution, and nutrient availability. Students will use their new knowledge to predict how those parameters may change as a result of major shifts in ocean circulation associated with global climate change.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Chemistry
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Oceanography
Physical Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/22/2020
Unit 1: The Food-Energy-Water Connection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit is designed to function as three days of instruction in an introductory urban planning, environmental science/studies or public health course.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Communication
Composition and Rhetoric
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Akin Akinyemi
Cheryl Young
Cynthia Hewitt
John Warford
Richard D. Schulterbrandt Gragg III
Date Added:
01/18/2022
Unit 2.1: Geodetic survey of an outcrop for road cut design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit offers an alternative application for high-resolution topographic data from an outcrop. Using engineering geology methods and data collection from TLS and/or SfM, students design safe "road cuts" with low probability of failure for a proposed fictitious roadway along the side of a hill. Cut slopes or "road cuts" are constructed slopes along roadways in mountainous regions. The design of such slopes requires a safe slope angle, rockfall catchment ditch, and drainage provision. The decision of the slope angle is based on kinematic analysis for slope failures due to the orientation of discontinuities (bedding planes, joints, etc.) with respect to that of the proposed slope. Traditionally, discontinuity orientation data are collected from measurements directly on the outcrop. This can be dangerous and the accessible sites may not be fully representative of the cut as a whole. Remote methods such as TLS and SfM generate 3D models from which discontinuity data can be collected safely. In this unit students learn the workflow for designing safe cut slopes using discontinuity data collected from direct field observations and TLS or SfM and compare the methods and results.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Earth and Space Science
Engineering
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/26/2022
Unit 2.1: Hydrologic Impact of Land-Use Change
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students model the impact of land-cover changes on stormwater runoff using the EPA's National Stormwater Calculator (Calculator). The students are introduced to the Calculator through a tutorial. Students are provided with a particular site -- a residential neighborhood -- and model two land-use scenarios associated with it: (1) a pre-expansion scenario that includes current forest and developed land cover, and (2) a post-expansion scenario, under which the forest cover will be developed as low-intensity residential.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Hydrology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/01/2022
Unit 2.2: Mitigation Using Low Impact Development (LID) Controls
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students model the impact of changes in land cover on stormwater runoff using the EPA's National Stormwater Calculator. Students mitigate increased stormwater runoff resulting from development with low impact development (LID) controls. Students assess the LID controls in terms of the ecosystem services that they are intended to replace and discuss alternative development designs to reduce the need for them.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Chemistry
Earth and Space Science
Environmental Studies
Geology
Hydrology
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/01/2022
Unit 2.3: Modeling Land-Use Change and Mitigation Strategies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students model the impact of a proposed land-use change for a local site using the EPA's National Stormwater Calculator (Calculator). Given a description of the proposed land-use change, students devise and execute a series of simulations in the Calculator that model its potential impact on stormwater retention. Using additional simulations, students explore changes to the site that utilize low impact development (LID) controls to mitigate stormwater runoff.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Hydrology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/01/2022
Unit 2: Causes of Mass Extinction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

During Unit 2, students will learn about the causes of two past mass extinctions and discuss the controversies surrounding these causes and the evidence upon which the theories in the debates are based. Before class, students will be assigned to read one of a set of different articles about theories for the causes of the end-Cretaceous and the end-Permian mass extinction. During class, students will get in groups with others who read different articles to pool their knowledge about flood-basalt eruptions and catastrophic asteroid impacts. They will re-group to compare and contrast the two proposed causes of the end-Permian and end-Cretaceous mass extinctions and the mass extinctions themselves.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Education
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
10/22/2021