To complete this assignment students need to choose a group and decide …
To complete this assignment students need to choose a group and decide who will write each section. They should also agree on a timeframe which will allow them to complete the assignment in the time provided. One student is expected to take the lead in assembling the final document. Students are expected to edit themselves the stay within the page limit, as they will find a vast amount of information. Students may work alone or in groups of less than five, but are still required to include all the necessary information.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this module, students calculate the pressure at the depth of compensation …
In this module, students calculate the pressure at the depth of compensation along a cross section of North America.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this module, students examine Archimede's Principle in general and as it …
In this module, students examine Archimede's Principle in general and as it applies to Isostacy.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are asked to numerically and then analytically determine the relations governing …
Students are asked to numerically and then analytically determine the relations governing the depth of compensation.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are asked to numerically and then analytically determine the relations governing …
Students are asked to numerically and then analytically determine the relations governing the depth of compensation.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This Lecture Tutorial worksheet guides students through thinking about the effects humans …
This Lecture Tutorial worksheet guides students through thinking about the effects humans have on infiltration, and how that effects the duration and severity of floods. It is designed to be used in groups after a brief lecture introducing surface and ground water flow into a stream.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
SSAC Geology of National Parks module/Geology of National Parks course. Students calculate …
SSAC Geology of National Parks module/Geology of National Parks course. Students calculate probabilities using USGS hydrograph data, a spreadsheet of daily stage heights, and the COUNTIF function.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This assignment asks students to do a flood frequency analysis to determine …
This assignment asks students to do a flood frequency analysis to determine the size and stage of various floods and determine if the town of Crawford, OH is likely to be flooded or not. Outcomes: learn to work with quantitative data, learn to use Excel, be able to use USGS data.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This lab activity has students use stream discharge data obtained from the …
This lab activity has students use stream discharge data obtained from the USGS Water Resources Division web site in order to calculate recurrence intervals for a local stream. Using the recurrence data generated, the students then make recommendations to the residents of a local town as to what they might do to reduce their loss from the effects of frequent flooding in their community.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students calculate recurrence intervals for various degrees of flooding based on historical …
Students calculate recurrence intervals for various degrees of flooding based on historical data. Students then do a risk assessment for the surrounding community.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this lab, students learn about four different types of flood: flash …
In this lab, students learn about four different types of flood: flash floods, regional floods, storm surges, and tsunami. They then explore the human experience of flooding and who is impacted the most by flooding in general and locally in the state of WA.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this several week-long introductory geoscience project, students evaluate the potential for …
In this several week-long introductory geoscience project, students evaluate the potential for flooding in the local region. Students visit the site during the first week of the semester as part of a "Walk in the Watershed" and make observations in order to generate hypotheses about the processes that shape the landscape and control the movement of water. During a later lab period, students return to the same site to determine stream discharge using the flotation and current meter methods and compare and contrast the results from the two methods. In addition, students in the different laboratory sections use their data to compare and contrast reasons for why discharge may have changed over the course of the day or week during the following class meeting. As an in-class exercise, students examine an annual hydrograph and then predict the weather that generated the observed stream discharge. Students test their hypotheses by analyzing precipitation data available on-line in order to correlate flood events with storm types or other causes for major discharge events. Next, students examine historical flood and discharge data of the local stream available on-line at http://nwis.waterdata.usgs.gov/ as a homework assignment. In addition to calculating the recurrence interval and probability of occurrence for each event, students determine the discharge and stage of a 1-, 10-, 50-, and 100-year flood, create a rating curve, and generate a floodway map for each of these events. Subsequently, students revisit the site during lab and locate the boundaries of these flood events. Students will make recommendations for building a house in the region based on their analyses.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this lab, students measure a topographic and geologic cross-section across a …
In this lab, students measure a topographic and geologic cross-section across a floodplain by simple surveying and auguring techniques.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this GIS-enhanced lab, students measure a topographic and geologic cross-section across …
In this GIS-enhanced lab, students measure a topographic and geologic cross-section across a floodplain by simple surveying and auguring techniques.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students explore the USGS water website to identify the location of stream …
Students explore the USGS water website to identify the location of stream gauges on the Minnesota River and the types of data that can be retrieved from the website. They determine which data to download based on the area of interest in the exercise (St. Peter, MN) and import historical flood data into MS Excel. The students use a spreadsheet to rank each flood and calculate a recurrence interval for a given flood, then estimate the discharge and stage of the 100-year flood in St. Peter, MN. The final task is to establish a flood hazard zone on a topographic map of the city of St. Peter. Note: this exercise can be applied to almost any non-dammed river with two or more USGS gaging stations on it. Go to http://water.usgs.gov and select your state from the pull-down menu to view an interactive map of your state's rivers and gaging station locations.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This exercise looks at the dollar losses and deaths caused by flooding …
This exercise looks at the dollar losses and deaths caused by flooding in the US, and at the causes of, and relationships between the two trends.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a field trip designed to connect labs on rocks and …
This is a field trip designed to connect labs on rocks and minerals with the bedrock geology of a group research site. Students locate themselves on topographic maps using GPS and the topography they observe, examine igneous and sedimentary rocks, and sketch igneous and sedimentary rock textures. The field trip gives the students an opportunity to review some common minerals before being confronted with a large number of rocks in boxes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a homework assignment used as preparation for a group research …
This is a homework assignment used as preparation for a group research project. Students graph annual discharge data from a local river by hand, and compare the discharge patterns from the stream above a reservoir with those below the dam. This exercise gives students practice graphing a small amount of data by hand, and gets them thinking about ways graphs can be used to help interpret data.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Most of this lab is a fairly traditional rocks-in-boxes lab on identification …
Most of this lab is a fairly traditional rocks-in-boxes lab on identification of sedimentary and metamorphic rocks. At the end of the lab, students practice identifying real rocks in the campus rock garden, which includes boulders of most of the bedrock units within our county. Students use GPS units to find the samples to identify (so that they can explore while the instructor answers other student questions). At each boulder, students identify the rock type, the minerals present, and the rock textures. The lab handout includes a simplified geologic map of an area that they previously visited on a field trip, and which they will use later in the semester in discussions of water samples that they collect.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.