Updating search results...

Search Resources

618 Results

View
Selected filters:
  • Module
Unit 5.2 - Water Balance Impacts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is the second module of a two week-long unit on hydrology in an upper-level undergraduate course on the Critical Zone. After Unit 5.1, students should have a basic understanding of the fluxes and reservoirs in the context of a tree and basin water balance. In Unit 5.2, students will learn how to apply environmental sensor data to larger catchment or regional scales (Part 1) and will connect hydrologic processes in the Critical Zone to societal needs through a quantitative resource availability and decision-making exercise (Part 2).

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Martha Conklin
Date Added:
12/15/2020
Unit 5: Agriculture and Freshwater Pollution
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Units 3 and 4 of this module explored how water resources are used for agriculture in the United States and how this can vary depending on location. In Unit 5, students explore how agricultural practices can affect the water quality in streams, rivers, lakes, and coastal areas. Important concepts in this unit include processes that transport suspended material (e.g., sediment) and dissolved material (e.g., nutrients) away from crop fields and into regional water bodies. The effects of dissolved nutrients on the health of the water ecosystems will be presented with examples of hypoxic zones in coastal areas and lake eutrophication. This last unit is well-suited to foster student advancement in systems thinking.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Agriculture and Natural Resources
Chemistry
Communication
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Hydrology
Physical Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Chris Sinton
Date Added:
01/02/2021
Unit 5: Analyzing Complexity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit has students build on a system diagram, to include new knowledge about quantitative values and relationships. They will also write about and discuss what they know about their systems, the questions that still remain, and how to find answers to their questions.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Communication
Composition and Rhetoric
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/25/2022
Unit 5: Balancing the Radiation Budget: A Jigsaw Exploration of the Global Climate System (Part 2)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this two-day activity spanning Units 4 and 5, students analyze spatial variation in climate through a map-based jigsaw exploration of NASA's Earth's Radiation Budget Experiment (ERBE) data. By the end of the activity students will have created maps and graphs illustrating the global radiation balance and used their knowledge to develop and refine hypotheses regarding impacts of global climate change.

In Unit 5 (day 2 of activity) students work in new groups that include members who analyzed each of the three ERBE datasets from day 1 of the activity (Unit 4). These synthesis groups work together to summarize their observations and infer regions of radiation excess and deficit in graph and map forms. These new figures are used to facilitate a whole-class discussion of the global radiation balance. The unit ends with a discussion of how atmospheric circulation acts to balance the radiation budget and the impacts of a changing climate on other Earth systems.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Environmental Science
Environmental Studies
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
12/10/2021
Unit 5: Case Study Group Work-Spatial Data Investigation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 5 will delve more into an examination of food security using online ArcGIS. The class begins with a GIS-based exploration of data available for the three regions. The rest of the class period is provided for group work creating an action plan for a food insecurity issue teams have identified for their region. Students will utilize their maps from ArcGIS Online within their action plan. One component of the summative assessment, to be submitted in Unit 6, is a community-based action plan of how the selected community can increase food security and lessen vulnerability.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Environmental Studies
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Case Study
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Amy Potter
Rebecca Boger
Russanne Low
Date Added:
12/02/2021
Unit 5: Hazardous Waste and Love Canal
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students explore the classic case of Love Canal, New York, in which Lois Gibbs -- originally described as a "hysterical housewife" -- mobilized her community and called attention to the contamination of groundwater by buried hazardous waste and the resulting impact on the health of local residents. The activities require the students to investigate the history of events at Love Canal. The materials in this unit may be used as a stand-alone day of instruction or as part of the complete Environmental Justice and Freshwater Resources InTeGrate Module.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Studies
Geology
Health, Medicine and Nursing
Hydrology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Jill Schneiderman
Meg Stewart
Date Added:
09/25/2022
Unit 5: Hazards and Risks at Convergent Plate Boundaries (Day 1 of Activity)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this two-day activity, students monitor an evolving volcanic crisis at a convergent plate boundary (Cascadia). Using monitoring data and geologic hazard maps, students make a series of forecasts for the impending eruption and associated risks. By the end of the activity, students will have learned the outcome of the eruption and assess the impacts of the eruption of Mount Rainier on specific locations around the volcano.
This unit begins by having students examine past volcanic eruptions at Mount St. Helens, associated with the Cascadia convergent plate boundary, through firsthand accounts by United States Geological Survey (USGS) personnel who describe their work monitoring the geologic activity and some associated impacts. During class on the first day (Unit 5), students will begin working in small groups to interpret one of three data sets used to monitor volcanic activity (seismic, gas and ash emissions, and tilt). During prework and in-class activities for day 2 (Unit 6), students will update their predictions by combining information from all three data sets in mixed groups in which students act as "experts" for a particular data set. The exercise culminates with students assessing the impacts of a simulated volcanic eruption at their assigned locations.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/19/2022
Unit 5: How do earthquakes affect society?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 5 is a final exercise that can start during a lab period and carry over into work outside of the lab time. The project report will test students' abilities to synthesize and apply knowledge related to LiDAR, InSAR, and infrastructure analysis learned in earlier units of the module. Data are provided for two potential case study sites for the final report -- El Major Cucapah Earthquake (Mexico 2010) and South Napa Earthquake (California 2014). Alternatively, the instructor or students can choose other sites to analyze. Unit 5, along with an exam question, is the summative assessment for the module. Students will be able to use the experience as a means of preparing for a final exam question on a related topic.

Show more about Online Teaching suggestions
Hide
Online-ready: The exercise is a final project that can be done remotely, individually or in small online groups.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Communication
Composition and Rhetoric
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Case Study
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/26/2022
Unit 5: Hurricane Risks and Coastal Development
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit addresses changes in hurricane risks due to coastal development. Students will calculate the risks from hurricanes and how the hazards have changed (or not) from 1901 to 2010. Students will determine how changes in coastal development have altered the risks presented by hurricanes by analyzing data in Activity 5.1 and historic maps and aerial photographs in Activity 5.2.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
06/01/2022
Unit 5: Linking Processes Driven By Internal and External Energy Sources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students use what they have learned in the previous units to link the above-ground part of the rock cycle (driven by the hydrologic cycle, energy from the Sun, and gravity) to the below-ground part of the rock cycle driven by Earth's internal heat energy. This unit is focused on group thinking: interpreting a rock cycle diagram and the role of the hydrologic cycle, identifying energy transfers (including sources and sinks), and describing hypothetical rock material transfer pathways. Students also make connections between erosion and plate tectonics through analysis of a reading, "How Erosion Builds Mountains."

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Susan DeBari
Date Added:
09/26/2022
Unit 5: Mapping the Impact of 100 and 500-year Floods
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Most often, we characterize floods based on their return periods. Considering new land developments and the changing climate, what was once a 100-year flood may change over time. Thus, if we are going to experience the previously defined 100-year flood more frequently, the new 100-year flood may be what was a 500-year flood before. One may then wonder what will be the impact of this 500-year flood compared to a 100-year flood? Is it five times bigger and more damaging than a 100-year flood? The goal of this Unit 5 is to let students quantify floods for 100 and 500 year return periods, and map the corresponding flood inundation extents. The students will then use these results to see how the flood magnitude and the inundation area changes for these floods. The final inundation maps can also be used to estimate key infrastructure that may be vulnerable.
This unit serves as the Summative Assessment for the module. Data sets are provided for students to apply concepts learned in prior units to a new scenario. As with Unit 4, this unit uses HEC-RAS. It can be done by students largely outside of class time.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/03/2022
Unit 5: Mitigating future disasters: developing a mass-wasting hazard map
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

empty

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Communication
Composition and Rhetoric
English Language Arts
Environmental Studies
Health, Medicine and Nursing
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Becca Walker
Date Added:
08/03/2022
Unit 5: Modern CO<sub>2</sub> Accumulation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will examine data that record the modern increase in carbon dioxide concentrations and the associated increase in average temperatures, and they will investigate the effects of carbon dioxide on various components of the Earth system (atmosphere, cryosphere, hydrosphere -- oceans). Students also learn how the burning of fossil fuels contributes to increases in atmospheric carbon dioxide.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Pamela Gore
Date Added:
04/15/2020
Unit 5. Net Zero Water Buildings
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 5 addresses the concept of Net Zero Water of buildings. Net Zero Water can be defined in different ways. For this module it means a building's water needs are supplied 100% from harvested rainwater or water that is recycled on site. Reducing indoor and outdoor water use is a key element. Reading and videos are assigned to aid students grasping the concept of Net Zero Water as applied to buildings. A spreadsheet tool from the U.S. Green Building Council is introduced and used to estimate indoor water demand for baseline and design (water conservation) scenarios. In addition, this unit links to Unit 4 by including an estimate for outdoor water demand. The central activity for the unit is an active learning team exercise to analyze indoor water use reduction for a case study building and evaluate Net Zero Water.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Engineering
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Case Study
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
07/31/2018
Unit 5: Oceans in Protection: Marine Protected Areas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will review current ocean pressures related to overfishing and human impacts on ocean ecosystems. By examining data collected in relation to the presence of marine reserves, students will explore long-term strategies for protecting ocean resources. Students will review scientific data to assess biomass, biodiversity, and reproductive success of fishery stocks in a marine protected area (MPA) and propose a location for the establishment of a marine reserve in the Channel Islands, California.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Oceanography
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
04/30/2022
Unit 5: Predicting the Effects of Climate Change on Soil Loss
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will investigate how the factors that influence erosion work together to produce an overall erosion rate. In agricultural areas, these factors are rainfall-runoff erosivity, soil erodibility, slope characteristics, and agricultural practices. Students will analyze changes in precipitation predicted by climate change models to consider how a changing climate could influence erosion rates in agricultural areas.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Agriculture and Natural Resources
Biology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Hannah Scherer
Martha Murphy
Sarah Fortner
Date Added:
09/07/2022
Unit 5: Regional sea level changes--a tale of two cities
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Is sea level change globally uniform? How do sea level changes have the potential to influence major metropolitan areas during the next century? How should these changes be addressed, and who should be responsible for taking action? In this unit, the conclusion to the Ice Mass and Sea Level Change module, students explore the potential impacts of sea level change on the economy, infrastructure, and residents of Southern California and New York City. Students also consider how changes in these two regions will have a widespread influence on other US cities, even for landlocked communities.

Show more about Online Teaching suggestions
Hide
Online-adaptable: This sea level impact analysis is designed to be done in small groups and possibly with a class gallery walk. These would need to be converted to small online groups and online discussion. The Part 4 wall walk could potentially be adapted to class discussion that uses polling feature to see people's opinions. Arguments could be made verbally or with the chat box.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Environmental Science
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/26/2022
Unit 5: Sensory Map Development
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, student groups will use sensory data (scents and/or sounds) collected in the field to create maps of the sensory environment and relate their findings to larger environmental problems identified in their guiding questions and hypotheses. This unit is designed to build upon prior units in which students develop guiding questions and hypotheses, field data collection protocols, and field investigation plans. The field investigation will require a base map on which to record data and a final map on which to display data and characterize the study area and environmental impact of the mapped data. The base map will be derived from aerial imagery if the investigation site is outside. The base map will be derived from a building schematic or floor map if an interior location is mapped.
Class time will be devoted to developing maps on which students will display the data collected in the field. Students will use Google Earth or other online resources to obtain aerial (or other schematic) imagery of their study area. They may use an aerial image as a base map or they may draw their own maps based on the aerial imagery. If the site is indoors, a blueprint or floor plan can be the base map, or students can draw their own maps based on an existing image or schematic.
Sensory mapping allows students to identify scent plumes as they migrate away from source locations. Odor plumes and sounds are analogous to plumes of contaminants that migrate through groundwater, surface water, and air. In many instances, the presence of unusual odors is an indicator of migrating contaminants and can lead to sampling by environmental professionals (including geoscientists) to confirm and quantify contaminant migration through the environment. These maps serve as representations of the complex odor or sound systems in the students' chosen geographical areas.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Communication
Composition and Rhetoric
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Health, Medicine and Nursing
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Kate Darby
Lisa Phillips
Michael Phillips
Date Added:
09/29/2022
Unit 5: Societal Implications of Climate Change: Stakeholder Report
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sea-level rise due to the melting of glaciers and ice sheets and ocean thermal expansion has significant societal and economic consequences. In this final unit, students prepare a summary of the impacts of sea level for relevant stakeholders. Students will integrate the stakeholder analysis in Unit 1 with the geodetic data (radar satellite altimetry, GRACE [Gravity Recovery and Climate Experiment], InSAR, and GPS) of ice mass loss and sea-level rise from Units 2 -- 4 in their analysis. Unit 5 is the summative assessment for the module.

Show more about Online Teaching suggestions
Hide
Online-ready: The exercise is a final project that can be done remotely, individually or in small online groups.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/01/2022
Unit 5: Summative assessment project
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 5 is the summative assessment for the module. This final exercise takes eight to ten hours. The exercise evaluates students' developed skills in survey design, execution of a geodetic survey, and simple data exploration and analysis. This summative assessment is written flexibly so that it can be applied to a variety of potential field sites and associated geoscience research questions. The unit has two parts, like most of the units in the module: Part 1, Geodetic Survey; and Part 2, Data Exploration. In addition, there is an optional Part 3, Data Processing, for students who have done Unit 4. This unit also has a number of prepared data sets for courses not able to collect field data.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
02/02/2022