In this biology inquiry lab, students study evolutionary relationships by making observations …
In this biology inquiry lab, students study evolutionary relationships by making observations of preserved animal specimens, developing a question, then investigating by dissecting the specimens provided.
Prior to this lab exercise, students discuss general physical differences between the …
Prior to this lab exercise, students discuss general physical differences between the planets Earth, Moon and Mars, and why these physical differences exist. They use globes and global data sets in lecture to investigate large-scale patters, similarities and differences between these bodies. They discuss methods by which planetary geologists study the surfaces of other planets. While working on this laboratory exercise, they use maps of the Earth, Moon and Mars (both geologic and topographic) as well as data from missions such as Clementine, MOLA, and HRSC, which they obtain online. The investigate impact crater morphology between the Earth and Moon; comparative planetary geology in the form of fluvial, tectonic, and volcanologic comparisons of Earth and Mars; and complete a geologic map and history of a region of Mars using only orbital images and data sets.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In small groups, students experiment and observe the similarities and differences between …
In small groups, students experiment and observe the similarities and differences between human-made objects and objects from nature. They compare the function and structure of hollow bones with drinking straws, bird beaks, tool pliers, bat wings and airplane wings. Observations are recorded in a compare & contrast chart, and then shared in a classroom discussion, along with follow up assessment activities such as journal writing and Venn diagrams.
This activity consists of classroom lessons where children observe tree leaves and …
This activity consists of classroom lessons where children observe tree leaves and compare and contrast those leaves leading to an understanding of the terms deciduous and evergreen (and also coniferous). They then use that learning to help them identify the kind of tree based on samples on a chart.
Investigate the difference in attractive force between polar and non-polar molecules by …
Investigate the difference in attractive force between polar and non-polar molecules by 'pulling' apart pairs of molecules. While all molecules are attracted to each other, some attractions are stronger than others. Non-polar molecules are attracted through a London dispersion attraction; polar molecules are attracted through both the London dispersion force and the stronger dipole-dipole attraction. The force of attractions between molecules has consequences for their interactions in physical, chemical and biological applications.
Carbon calculators, no matter how well intended as tools to help measure …
Carbon calculators, no matter how well intended as tools to help measure energy footprints, tend to be black boxes and can produce wildly different results, depending on the calculations used to weigh various energy factors. By comparing different calculators, learners can analyze which ones are the most accurate and relevant, and which are the most transparent.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity applies to Teaching Principle 2: Climate is regulated by complex …
This activity applies to Teaching Principle 2: Climate is regulated by complex interactions among components of the Earth System. It specifically addresses Concept 2A: Earth's climate is influenced by interactions involving the sun, ocean, atmosphere, clouds, ice, land, and life. Climate varies by region as a result of local differences in these interactions. It is anticipated that the activity will take two 50 - 75 minute class periods with additional time for follow-up assessment. Students use web resources to identify climate patterns and distributions and synthesize the information to develop an understanding of the global variation.
Students develop tables of temperature and precipitation averages and also identify and describe an extreme weather event. This exercise is an inquiry-style lesson and can easily be adapted for use in or out of the classroom.
Note: Prior to this assignment, students should receive some information on how to sample climate data from the GLOBE or NASA sets, or how to find quality online resources about climate and climate variability. This could be done as a walk-through, in-class tutorial of government/ university research centers and SERC sites, comparing the information in each to less reliable sources such as Wikipedia.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Investigate the difference in attractive force between polar and non-polar molecules by …
Investigate the difference in attractive force between polar and non-polar molecules by "pulling" apart pairs of molecules. While all molecules are attracted to each other, some attractions are stronger than others. Non-polar molecules are attracted through a London dispersion attraction; polar molecules are attracted through both the London dispersion force and the stronger dipole-dipole attraction. The force of attractions between molecules has consequences for their interactions in physical, chemical and biological applications.
This activity uses demographic information from the United Nations publication "World Population …
This activity uses demographic information from the United Nations publication "World Population Prospects" to explore the differences in population trends for the United States to Uganda including overall population growth, distribution of population versus age, life expectancy, and fertility rate. Demographic information for numerous other countries is available in the United Nations' publication to allow students to explore the variations in trends for other countries. Students also evaluate factors that could lead to observed changes in population growth and the assumptions made for predicting population variation.
Keywords: human population change, human demographic information
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this field investigation, students compare various soil samples taken from specific …
In this field investigation, students compare various soil samples taken from specific locations. Students compare samples, record data, create a chart or graph, and journal.
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students study how …
Spreadsheets Across the Curriculum module/Geology of National Parks course. Students study how discharge per unit area varies with elevation in the high country of Glacier National Park from USGS hydrograph data from Swiftcurrent Creek and its tributary Grinnell Creek..
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The lesson is designed for fourth grade students using scientific investigation to …
The lesson is designed for fourth grade students using scientific investigation to identify and compare the basic parts of a plant and animal cells. This activity consists of several steps over a period of several days. It includes student use of microscopes for observations and journals to collect data to identify and classify the basic parts of plant and animal cells. The assessment has an individual component and uses student work.
This assignment connects aspects of green chemistry and environmental stewardship with some …
This assignment connects aspects of green chemistry and environmental stewardship with some of the skills and theory involved in natural products chemistry and separation methods.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this activity students synthesize ideas from lecture, reading, and viewing two …
In this activity students synthesize ideas from lecture, reading, and viewing two PBS NOVA videos on hurricanes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
A 1-page in-class exercise on compatibility diagrams. (Note: this resource was added …
A 1-page in-class exercise on compatibility diagrams.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
A 1-page in-class exercise on compatibility diagrams. (Note: this resource was added …
A 1-page in-class exercise on compatibility diagrams.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
A 1-page in-class exercise on compatibility diagrams. (Note: this resource was added …
A 1-page in-class exercise on compatibility diagrams.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Explore a NetLogo model of populations of rabbits, grass, and weeds. First, …
Explore a NetLogo model of populations of rabbits, grass, and weeds. First, adjust the model to start with a different rabbit population size. Then adjust model variables, such as how fast the plants or weeds grow, to get more grass than weeds. Change the amount of energy the grass or weeds provide to the rabbits and the food preference. Use line graphs to monitor the effects of changes you make to the model, and determine which settings affect the proportion of grass to weeds when rabbits eat both.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.