Updating search results...

Search Resources

2638 Results

View
Selected filters:
  • Teach the Earth
Earthquake Hazards Around You
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students chose a room where they spend a significant amount of time. Next, they assess the room for earthquake hazards, create a map depicting where these hazards are located, and finally, describe what would happen during an earthquake for a given intensity.

Subject:
Agriculture and Natural Resources
Earth and Space Science
Environmental Studies
Geology
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
04/12/2023
Earthquake Hazards: The next big one?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students explore of the concept of probability and the distribution of earthquake sizes, and then work to understand how earthquake hazards are described by probabilities. Students then work in small groups to collect and analyze data from a simple physical earthquake model and use online data to investigate and compare the earthquake hazards in California and Missouri. The activity concludes with a reflection where they students are asked to consider how, in the role of a city planner or emergency manager, they would use what they have learned to mitigate the earthquake hazard in California and Missouri.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/11/2020
Earthquake Intensity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introductory lesson that compares ShakeMaps between earthquakes in the same location but different magnitudes, and earthquakes of the same magnitude but different depths, to acquaint learners to the fundamental controls on intensity of shaking felt during an event: magnitude and distance from the earthquake source.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/16/2022
Earthquake Investigation Workshop: Shake, Rattle, & Rock
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will make "earthquakes" using a simple model, the earthquake machine. It is patterned on the EQ machine described by Ross Stein, Michelle Hall-Wallace, and others. References are given below. We have added force and distance sensors to the machine, and linked them (via GOLINKS) to new new software, that allows students to graph and analyze their data. All SW will be freely available. Students will evaluate the hypothesis that although earthquake patterns can be observed, the exact time and size of an earthquake cannot be predicted. Students then apply these insights to predicting earthquakes on the San Andreas fault, and estimating the magnitude of earthquakes on ancient faults in the region.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/06/2020
Earthquake Location
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Earthquake location is an interesting and significant aspect of seismology. Locating earthquakes is necessary for compiling useful seismicity information, calculating magnitudes, and study of fault zones, Earth structure and the earthquake process. Methods of earthquake location involve understanding of seismic waves, wave propagation, interpretation of seismograms, Earth velocity structure, triangulation, and the concepts (and mathematics) of inverse problems. Because earthquake location can be approached with relatively simple to very complex methods, it can be included in various levels of educational curricula and for "in-depth" study. Progressively developing a deep understanding of concepts, computational techniques and applications (and the capabilities, limitations and uncertainties of these applications) is a characteristic of science and an -- opportunity to "learn science by doing science." A number of methods that vary from simple to complex are available for learning about earthquake location. The methods also allow connections to other important concepts in seismology and provide a variety of approaches that address different learning styles and can be used for reinforcement and assessment.
Uses online and/or real-time data
Has minimal/no quantitative component

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Geology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/05/2020
Earthquake Machine
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners work collaboratively in small groups to explore the earthquake cycle by using a physical model. Attention is captured through several short video clips illustrating the
awe-inspiring power of ground shaking resulting from earthquakes. To make students' prior knowledge explicit and activate their thinking about the topic of earthquakes, each student writes their definition of an earthquake on a sticky note. Next, through a collaborative process, small groups of students combine their individual definitions to create a consensus definition for an earthquake.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/26/2022
Earthquake Machine Demonstration
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students are expected to complete readings related to the mechanics of earthquakes (most don't do it). This activity allows them to apply the rules and extend their knowledge by making predictions.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/21/2019
Earthquake Magnitude: How Can We Compare the Sizes of Earthquakes?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Spreadsheets Across the Curriculum module. Students build spreadsheets to tabulate and graph seismic wave amplitude and energy release to explore the logarithmic scale of earthquake magnitude.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
12/16/2020
Earthquake Seismograms and Spreadsheets
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students work with data from an earthquake in South America. Student materials include a Microsoft Excel spreadsheet with marked cells and cells to enter data, a PDF with seismograms, travel-time curve and nomogram, and the instruction sheet. The exercise is divided into three parts.
Part I introduces the concept of a seismogram. Students identify P- and S-wave arrival times and use the differences to obtain distances from a travel-time curve.
In Part II, students work with GPS Visualizer to triangulate the epicenter online and with a nomogram to determine the local magnitude of the earthquake as recorded by each seismometer.
Part III involves an introduction to spreadsheets using a workbook with prepared worksheets. Finally, students rewrite algebraic expressions in computer terms for entering formulas in spreadsheets.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/30/2022
Earthquake Shaking and Damage
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This student homework and problem set has students quantitatively earthquake hazard, shaking and damage.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/25/2020
Earthquake resistant design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After having learned about earthquakes in class, through readings and earlier lab assignments, students (in groups of two) are asked to design and construct (using balsa wood, string, paper and glue) a three-story building designed to minimize the effects of shear-wave vibrations that occur during an earthquake. The students are required to research the design concepts on their own and most of the construction work occurs outside of the regular laboratory period. The structures are tested for strength a week before the earthquake occurs - can they support the required load for each floor? On earthquake day, the buildings a tested for a "design earthquake" and then each group is given the opportunity to see how "large" and earthquake their structure can withstand - both in terms of frequency and amplitude variations. In addition to building the structure, each team has to submit a paper reflecting on why they designed and built the structure the way they did.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/21/2019
Earthquakes
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

For this exercise we meet in a computer lab and students access the IRIS Earthquake Browser to download geospatial information of earthquakes. Students use the GEON Integrated Data Viewer (IDV) to explore the location of earthquake zones and their 3-dimensional characteristics. Students compare the earthquake characteristics of subduction zones, mid-oceanic ridges, and transform faults. This leads into a discussion of plate tectonics.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Data Set
Interactive
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
04/04/2021
Earth's Climate System
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity will help students to identify and analyze factors contributing to Earth's climate systems.














Provenance: Beverly Owens, Cleveland Early College High School
Reuse: This item is offered under a Creative Commons Attribution-NonCommercial-ShareAlike license http://creativecommons.org/licenses/by-nc-sa/3.0/ You may reuse this item for non-commercial purposes as long as you provide attribution and offer any derivative works under a similar license.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Earth and Space Science
Environmental Science
Life Science
Oceanography
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/26/2022
Earth's Interior CogSketch geoscience worksheet
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Earth's Interior worksheet involves the layers of the Earth and is meant to help students: 1) Draw the layers of the Earth true-to-scale (on an image with a scale bar), and 2) Grasp the size of the Earth by starting at a somewhat familiar scale (the upper 40km of the crust) and progressively adding layers and increasing the scale to the radius of the Earth (~6,400km). Moving from the familiar to the unfamiliar has been shown to be an effective strategy to understand large magnitudes (Resnick, Shipley, Newcombe, Massey, & Wills, 2012).

Starting at the surface, the student adds layers of the earth as the scale increases (40km, 400km, 700km, 3,000km, and 6,400km). The layers include the base of continental crust, upper mantle, transition zone, lower mantle, and the outer core, as well as drawing the height of a building at the surface to help gain perspective as the scale changes. Students also complete 3 multiple choice questions at the end of the worksheet to solidify and focus on goals and important concepts.

This worksheet uses the sketch-understanding program with built-in tutor: CogSketch. Therefore, students, instructors, and/or institution computer labs need to download the program from the CogSketch website: http://www.qrg.northwestern.edu/software/cogsketch/. At any point during the worksheet, students can click the FEEDBACK button and their sketch is compared to the solution sketch. The built-in tutor identifies any discrepancies and reports pre-written feedback to help the student correct their sketch until they are done with the activity. Once worksheets are emailed to the instructor, worksheets can be batch graded and easily evaluated. This program allows instructors to assign sketching activities that require very little time commitment. Instead, the built-in tutor provides feedback whenever the student requests, without the presence of the instructor. More information on using the program and the activity is in the Instructor's Notes.

We have developed approximately two dozen introductory geoscience worksheets using this program. Each worksheet has a background image and instructions for a sketching task. You can find additional worksheets by searching for "CogSketch" using the search box at the top of this page. We expect to have uploaded all of them by the end of the summer of 2016.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Earth and Space Science
Geology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
04/23/2020
Earth's Magnetic Field CogSketch geoscience worksheet
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This worksheet helps students visualize Earth's magnetic field, shows how magnetic inclination changes with latitude, and shows how rocks can be tied to specific latitudes of origin based on magnetic inclination recorded in the rock. In this worksheet, students are given a diagram of the Earth with its magnetic field and 8 packages of "rock" with magnetic inclination arrows. Students grab, move, and rotate each rock to determine its latitude of origin by matching the arrows in the "rock" with the magnetic field lines on the diagram of the Earth. By allowing a direct, physical comparison of the magnetic field to magnetic inclinations recorded in rocks, this worksheet reduces the cognitive load of visualizing those spatial relationships. The worksheet includes a problem that walks students through the process of determining movement of a plate that has two bodies of rock with different magnetic minerals.

This worksheet uses the sketch-understanding program with built-in tutor: CogSketch. Therefore, students, instructors, and/or institution computer labs need to download the program from here: http://www.qrg.northwestern.edu/software/cogsketch/. At any point during the worksheet, students can click the FEEDBACK button and their sketch is compared to the solution image. The built-in tutor identifies any discrepancies and reports pre-written feedback to help the student correct their sketch until they are done with the activity. Once worksheets are emailed to the instructor, worksheets can be batch graded and easily evaluated. This program allows instructors to assign sketching activities that require very little time commitment. Instead, the built-in tutor provides feedback whenever the student requests, without the presence of the instructor. More information on using the program and the activity is in the Instructor's Notes.

We have developed approximately two dozen introductory geoscience worksheets using this program. Each worksheet has a background image and instructions for a sketching task. You can find additional worksheets by searching for "CogSketch" using the search box at the top of this page. We expect to have uploaded all of them by the end of the summer of 2016.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
04/23/2020
Earth's Radiation Budget
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity students explore the Earth's radiation budget using Earth radiation Budget Experiment (ERBE) data archived at the IRI/LDEO Climate Data Library (more info) .

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Chemistry
Life Science
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Data Set
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/21/2022
The Earth's Shells - Density vs. Depth
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this module, students are asked to devise a way of graphically plotting the density variations with depth in the Earth.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/18/2019
The Earths Shells - Thicknesses and Densities
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module explores the combination of densities and shell thicknesses that produce an aggregate density of the Earth of 5.5 g/cm3.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/18/2019
Earth's Surface Features
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students work in pairs on this worksheet and strengthen their background knowledge by identifying different features in photographs of Earth's surface. Then to build on this base, the students need to determine the key processes that form each of the features. To address a common misconception, students read a debate between two hypothetical students and need to determine which student is stating the scientifically correct idea. The project is summarized by a question posed about the features on a hypothetical planet.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
01/22/2020
Earth's Surface Features Lecture Tutorial
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Lecture Tutorial worksheet is designed for students to work on in groups after the students
have learned about basic surface features and how they relate to planets in general. The tutorial
is designed to help students look at these simple features and realize that they are not
independent features, but instead are related to the planet as a whole.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
12/17/2020