Compare the electron distribution, potential energy, and forces of two interacting hydrogen …
Compare the electron distribution, potential energy, and forces of two interacting hydrogen atoms (which can bond) with two helium atoms (which do not).
Play with a 1D or 2D system of coupled mass-spring oscillators. Vary …
Play with a 1D or 2D system of coupled mass-spring oscillators. Vary the number of masses, set the initial conditions, and watch the system evolve. See the spectrum of normal modes for arbitrary motion. See longitudinal or transverse modes in the 1D system.
An investigation of changes in polar regions using Google Earth. (Note: this …
An investigation of changes in polar regions using Google Earth.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this experiential activity, students demonstrate to themselves the effect of the …
In this experiential activity, students demonstrate to themselves the effect of the optic disc, or blind spot, inherent to the optic nerve entering the posterior of the eye (bulbus oculi). This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control …
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control …
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)
A one page activity that takes students to several websites related to …
A one page activity that takes students to several websites related to the obesity epidemic. First they can calculate BMI, then learn about national trends in the rate of obesity and finally use a tutorial on insulin and diabetes.
This activity is used to introduce or reinforce in students the importance …
This activity is used to introduce or reinforce in students the importance of differentiating between observations and interpretations and quantitative and qualitative observations during classroom experimentation or demonstrations
Students will use science skills of observing, describing and measuring in the …
Students will use science skills of observing, describing and measuring in the context of Making Ice Cream. Students will understand the concept that physical properties can change.
An interactive applet and associated web page that demonstrate obtuse angles (those …
An interactive applet and associated web page that demonstrate obtuse angles (those between 90 and 180 deg). The applet presents an angle (initially obtuse) that the user can adjust by dragging the end points of the line segments forming the angle. As it changes it shows the angle measure and a message that indicate which type of angle it is. There a software 'detents' that make it easy capture exact angles such as 90 degrees and 180 degrees The message and angle measures can be turned off to facilitate classroom discussion. The text on the page has links to other pages defining each angle type in depth. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
See how the equation form of Ohm's law relates to a simple …
See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram.
Explore the interactions that cause water and oil to separate from a …
Explore the interactions that cause water and oil to separate from a mixture. Oil is a non-polar molecule, while water is a polar molecule. While all molecules are attracted to each other, some attractions are stronger than others. Non-polar molecules are attracted through a London dispersion attraction; polar molecules are attracted through both the London dispersion force and the stronger dipole-dipole attraction. When oil and water are mixed, the dipole-dipole interactions are disrupted, but constant molecular motion allows the stronger dipole-dipole attractions to partition the polar molecules from the mixture. The force of attractions between molecules has consequences for their interactions in physical, chemical and biological applications.
This example is an in-class market simulation conducted with paper cards assigning …
This example is an in-class market simulation conducted with paper cards assigning each student a buyer or seller role and a reservation price. This example is appropriate for both upper and lower division courses. Open Outcry Market was developed by Barry P. Keating at the University of Notre Dame.
Explore an active area of research in optical physics: producing designer pulse …
Explore an active area of research in optical physics: producing designer pulse shapes to achieve specific purposes, such as breaking apart a molecule. Carefully create the perfect shaped pulse to break apart a molecule by individually manipulating the colors of light that make up a pulse.
Did you ever imagine that you can use light to move a …
Did you ever imagine that you can use light to move a microscopic plastic bead? Explore the forces on the bead or slow time to see the interaction with the laser's electric field. Use the optical tweezers to manipulate a single strand of DNA and explore the physics of tiny molecular motors. Can you get the DNA completely straight or stop the molecular motor?
Did you ever imagine that you can use light to move a …
Did you ever imagine that you can use light to move a microscopic plastic bead? Explore the forces on the bead or slow time to see the interaction with the laser's electric field. Use the optical tweezers to manipulate a single strand of DNA and explore the physics of tiny molecular motors. Can you get the DNA completely straight or stop the molecular motor?
Our Coast, Our Future (OCOF) is a collaborative, user-driven project focused on …
Our Coast, Our Future (OCOF) is a collaborative, user-driven project focused on providing coastal California resource managers and land use planners locally relevant, online maps and tools to help understand, visualize, and anticipate vulnerabilities to sea level rise and storms.
This is a collection of outreach resources about the Sun that are …
This is a collection of outreach resources about the Sun that are meant to be used in informal education settings. This toolkit was originally designed for NASA Night Sky Network member clubs and the Astronomical Society of the Pacific's Astronomy from the Ground Up network of museum and science center educators. The toolkit includes background information about the Sun, magnetic fields of the Earth and Sun, and space weather, activity suggestions, and detailed activity scripts. The themes of this toolkit address both the constant nature of the Sun as a reliable source of energy and the dynamic nature of the Sun due to its changing magnetic fields. The activities and related materials in this collection include The Sun in a Different Light - Observing the Sun, Explore the Sun cards, Magnetic Connection, the Space Weather PowerPoint, Protection from Ultraviolet, and Where Does the Energy Come From cards. These activities can be done separately or as a group as part of an informal education event. Institutions that are not part of the Night Sky Network will need to acquire the various materials required for each activity.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.