This is a teacher demonstration used to show an example of kinetic …
This is a teacher demonstration used to show an example of kinetic molecular energy using food coloring and water. The students are also given opportunity to develop their own questions and tests.
Students learn the basics of the electromagnetic spectrum and how various types …
Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.
As science extension activities, this book of problems introduces students to mapping …
As science extension activities, this book of problems introduces students to mapping the shape of the Milky Way galaxy, and how to identify the various kinds of galaxies in our universe. Students also learn about the shapes and sizes of other galaxies in our universe as they learn how to classify them. The math problems cover basic scientific notation skills and how they apply to working with astronomically large numbers. It also provides exercises in plotting points on a Cartesian plane to map the various features of our Milky Way.
Once the pride of the German Navy, this 700 foot long heavy …
Once the pride of the German Navy, this 700 foot long heavy cruiser was used by the U.S. as a test target for not one but two atom bombs at Bikini atoll. Today, at the bottom of the ocean, the radiation levels of the Prinz Eugen are low enough for safe exploration. In this video, Jonathan joins historian Mark Miller on a trip to explore this mysterious shipwreck. What they find about the condition of this wreck is surprising. Please see the accompanying lesson plan for educational objectives, discussion points and classroom activities.
This activity provides for small group investigation of the properties of different …
This activity provides for small group investigation of the properties of different liquids leading to the discovery that liquids are different in many ways, including density.Students would be led to a very beginning understanding of density.
This lab is designed to be a highly interactive lab session for …
This lab is designed to be a highly interactive lab session for a petrology course, where instructors provide a minimal level of essential background and then the entire group works together to explore mineral chemistry. In using a new piece of technology, students can "learn as they go." The point is not to understand every aspect of how an instrument works or to become proficient users, but rather to use the visual impact of the output to catch their interest and advance their analytical skills in the process. I find this lab works very well as a bridge between two semesters of a typical Mineralogy-Petrology sequence. Having completed crystallography, systematic mineralogy and optical, students find this a welcome change of pace and it helps them to start thinking about how mineral associations form the basis of petrology. It is also a great reinforcement and integration of mineralogy and chemistry, allowing you to leap off into crystal chemistry more deeply.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is an extension of the FOSS Variables Lifeboat investigation. Students …
This activity is an extension of the FOSS Variables Lifeboat investigation. Students choose a lifeboats variable to investigate, write up an experiment based on the variable to be tested, test the variable, and create a lifeboats investigation poster to share their results.
Based on what they have already learned about friction, students formulate hypotheses …
Based on what they have already learned about friction, students formulate hypotheses concerning the effects of weight and contact area on the amount of friction between two surfaces. In the Associated Activities (Does Weight Matter? and Does Area Matter?), students design and conduct simple experiments to test their hypotheses, using procedures similar to those used in the previous lesson (Discovering Friction). An analysis of their data will reveal the importance of weight to normal friction (the friction that occurs as a result of surface roughness) and the importance of surface area to the friction that occurs between smooth surfaces due to molecular attraction. Based on their data, students will also be able to calculate coefficients of friction for the materials tested, and compare these to published values for various materials.
This online exhibit is a visual illusion in which a fuzzy blue …
This online exhibit is a visual illusion in which a fuzzy blue dot disappears into a green background. The illusion is created by the tiny jittering movements that your eyes are continually making. Take your investigation further by making your own hands-on fading dot illusion - instructions are at the Exploratorium Snack website (see related link).
This activity shows how an ordinary ruler can measure human reaction time …
This activity shows how an ordinary ruler can measure human reaction time (RT). Learners will convert a standard ruler into a time ruler (relating time and distance) and measure each others RT. They will also calculate means and variances and the RT required to accomplish a specific task. Additional resources and an extension to this activity are available. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
Play with a bar magnet and coils to learn about Faraday's law. …
Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!
Light a light bulb by waving a magnet. This demonstration of Faraday's …
Light a light bulb by waving a magnet. This demonstration of Faraday's Law shows you how to reduce your power bill at the expense of your grocery bill.
Light a light bulb by waving a magnet. This demonstration of Faraday's …
Light a light bulb by waving a magnet. This demonstration of Faraday's Law shows you how to reduce your power bill at the expense of your grocery bill.
Students use wood, wax paper and oil to investigate the importance of …
Students use wood, wax paper and oil to investigate the importance of lubrication between materials and to understand the concept of friction. Using wax paper and oil placed between pieces of wood, the function of lubricants between materials is illustrated. Students extend their understanding of friction to bones and joints in the skeletal system and become aware of what engineers can do to help reduce friction in the human body as well as in machines.
All of us have felt sick at some point in our lives. …
All of us have felt sick at some point in our lives. Many times, we find ourselves asking, "What is the quickest way that I can start to feel better?" During this two-lesson unit, students study that question and determine which form of medicine delivery (pill, liquid, injection/shot) offers the fastest relief. This challenge question serves as a real-world context for learning all about flow rates. Students study how long various prescription methods take to introduce chemicals into our blood streams, as well as use flow rate to determine how increasing a person's heart rate can theoretically make medicines work more quickly. Students are introduced to engineering devices that simulate what occurs during the distribution of antibiotic cells in the body.
Working individually or in groups, students explore the concept of stress (compression) …
Working individually or in groups, students explore the concept of stress (compression) through physical experience and math. They discover why it hurts more to poke themselves with mechanical pencil lead than with an eraser. Then they prove why this is so by using the basic equation for stress and applying the concepts to real engineering problems.
In this video segment from Cyberchase, through addition and regrouping in base …
In this video segment from Cyberchase, through addition and regrouping in base sixty, Matt helps Digit figure out what time his CyberSoufflŰ__ŰÖ will be done.
Activity involves field data collection with a ground penetrating radar (GPR) unit …
Activity involves field data collection with a ground penetrating radar (GPR) unit to identify the location of an underground storage tank (UST). Data collection grid could also be collected and mapped with GPS unit. Actual field data are included with the exercise if field data collection is not an option. The activity gives students hands-on experience with data analysis / interpretation and mapping of subsurface storage tanks that are frequently associated with environmental contamination. This activity uses online and/or real-time data and uses geophysics to solve problems in other fields.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity introduces students to the finite difference solution of the hill-slope …
This activity introduces students to the finite difference solution of the hill-slope diffusion PDE. The students derive partial derivatives from Taylor Series expansions of the 2D topography function z(x,t). After deriving the finite difference solution to this PDE, students implement this solution in MATLAB to model hillslope evolution in time using constant material properties and time steps.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.