Create a flying superhero out of paper. See if it flies. Adjust …
Create a flying superhero out of paper. See if it flies. Adjust your design. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
Students are introduced to servos and the flex sensor as they create …
Students are introduced to servos and the flex sensor as they create simple, one-jointed, finger robots controlled by Arduino. Servos are motors with feedback and are extensively used in industrial and consumer applications—from large industrial car-manufacturing robots that use servos to hold heavy metal and precisely weld components together, to prosthetic hands that rely on servos to provide fine motor control. Students use Arduino microcontrollers and flex sensors to read finger flexes, which they process to send angle information to the servos. Students create working circuits; use the constrain, map and smoothing commands; learn what is meant by library and abstraction in a coding context; and may even combine team finger designs to create a complete prosthetic hand of bendable fingers.
Students’ background understanding of electricity and circuit-building is reinforced as they create …
Students’ background understanding of electricity and circuit-building is reinforced as they create wearable, light-up e-textile pins. They also tap their creative and artistic abilities as they plan and produce attractive end product “wearables.” Using fabric, LED lights, conductive thread (made of stainless steel) and small battery packs, students design and fabricate their own unique light-up pins. This involves putting together the circuitry so the sewn-in LEDs light up. Connecting electronics with stitching instead of soldering gives students a unique and tangible understanding of how electrical circuits operate.
Student teams design and then create small-size models of working filter systems …
Student teams design and then create small-size models of working filter systems to simulate multi-stage wastewater treatment plants. Drawing from assorted provided materials (gravel, pebbles, sand, activated charcoal, algae, coffee filters, cloth) and staying within a (hypothetical) budget, teams create filter systems within 2-liter plastic bottles to clean the teacher-made simulated wastewater (soap, oil, sand, fertilizer, coffee grounds, beads). They aim to remove the water contaminants while reclaiming the waste material as valuable resources. They design and build the filtering systems, redesigning for improvement, and then measuring and comparing results (across teams): reclaimed quantities, water quality tests, costs, experiences and best practices. They conduct common water quality tests (such as turbidity, pH, etc., as determined by the teacher) to check the water quality before and after treatment.
Students create silver nanoparticles using a chemical process; however, since these particles …
Students create silver nanoparticles using a chemical process; however, since these particles are not observable to the naked eye, they use empirical evidence and reasoning to discover them. Students first look for evidence of a chemical reaction by mixing various solutions and observing any reactions that may occur. Students discover that copper and tannic acids from tea reduce silver nitrate, which in turn form silver. They complete the reaction, allow the water to evaporate, and observe the silver nanoparticles they created in plastic dishes using a stereo microscope. Students iterate on their initial process and test to see if they can improve the manufacturing process of silver nanoparticles.
Student teams investigate the properties of electromagnets. They create their own small …
Student teams investigate the properties of electromagnets. They create their own small electromagnet and experiment with ways to change its strength to pick up more paper clips. Students learn about ways that engineers use electromagnets in everyday applications.
Students are introduced to the world of creative engineering product design. Through …
Students are introduced to the world of creative engineering product design. Through six activities, teams work through the steps of the engineering design process (or loop) by completing an actual design challenge presented in six steps. The project challenge is left up to the teacher or class to determine; it might be one decided by the teacher, brainstormed with the class, or the example provided (to design a prosthetic arm that can perform a mechanical function). As students begin by defining the problem, they learn to recognize the need, identify a target population, relate to the project, and identify its requirements and constraints. Then they conduct research, brainstorm alternative solutions, evaluate possible solutions, create and test prototypes, and consider issues for manufacturing. See the Unit Schedule section for a list of example design project topics.
Crea un globo cohete. Pruebe su diseño. Actividad de Bolsa de STEM …
Crea un globo cohete. Pruebe su diseño. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.
Students learn about viscoelastic material behavior, such as strain rate dependence and …
Students learn about viscoelastic material behavior, such as strain rate dependence and creep, by using silly putty, an easy-to-make polymer material. They learn how to make silly putty, observe its behavior with different strain rates, and then measure the creep time of different formulations of silly putty. By seeing the viscoelastic behavior of silly putty, students start to gain an understanding of how biological materials function. Students gain experience in data collection, graph interpretation, and comparison of material properties to elucidate material behavior. It is recommended that students perform Part 1of the activity first (making and playing with silly putty), then receive the content and concept information in the associated lesson, and then complete Part 2 of the activity (experimenting and making measurements with silly putty).
Crea una mariposa usando cromatografía. Proyecto de manualidades de arte y ciencia. …
Crea una mariposa usando cromatografía. Proyecto de manualidades de arte y ciencia. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.
Team Challenge! Use a simple cup stacking tool made from string. How …
Team Challenge! Use a simple cup stacking tool made from string. How many cups can your team stack without using your hands? Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
Using a website simulation tool, students build on their understanding of random …
Using a website simulation tool, students build on their understanding of random processes on networks to interact with the graph of a social network of individuals and simulate the spread of a disease. They decide which two individuals on the network are the best to vaccinate in an attempt to minimize the number of people infected and "curb the epidemic." Since the results are random, they run multiple simulations and compute the average number of infected individuals before analyzing the results and assessing the effectiveness of their vaccination strategies.
Students gain experience with the software/system design process, closely related to the …
Students gain experience with the software/system design process, closely related to the engineering design process, to solve a problem. First, they learn about the Mars Curiosity rover and its mission, including the difficulties that engineers must consider and overcome to operate a rover remotely. Students observe a simulation of a robot being controlled remotely. These experiences guide discussion on how the design process is applied in these scenarios. The lesson culminates in a hands-on experience with the design process as students simulate the remote control of a rover. In the associated activity, students gain further experience with the design process by creating an Android application using App Inventor to control one aspect of a remotely controlled vehicle. (Note: The lesson requires a LEGO® MINDSTORMS® Education NXT base set.)
It’s a new VET curricula, aimed to help VET students to take …
It’s a new VET curricula, aimed to help VET students to take advantage of the huge opportunities created by Industry 4.0, through the adaption of drone technology, in order to start a new business or to expand already existing companies.
The document is available in 5 languages (EN, RO, PL, GR, IT). All language versions are available for download on www.edudrone-project.eu
Students pretend they are agricultural engineers during the colonial period and design …
Students pretend they are agricultural engineers during the colonial period and design a miniature plow that cuts through a "field" of soil. They are introduced to the engineering design process and learn of several famous historical figures who contributed to plow design.
Investiga la electricidad estática con un globo. Actividad de Bolsa de STEM …
Investiga la electricidad estática con un globo. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.
DASHlink is a virtual laboratory for scientists and engineers to disseminate results …
DASHlink is a virtual laboratory for scientists and engineers to disseminate results and collaborate on research problems in health management technologies for aeronautics systems. Managed by the Integrated Vehicle Health Management project within NASA's Aviation Safety program, the Web site is designed to be a resource for anyone interested in data mining, IVHM, aeronautics and NASA.
Students reinforce their knowledge that DNA is the genetic material for all …
Students reinforce their knowledge that DNA is the genetic material for all living things by modeling it using toothpicks and gumdrops that represent the four biochemicals (adenine, thiamine, guanine, and cytosine) that pair with each other in a specific pattern, making a double helix. They investigate specific DNA sequences that code for certain physical characteristics such as eye and hair color. Student teams trade DNA "strands" and de-code the genetic sequences to determine the physical characteristics (phenotype) displayed by the strands (genotype) from other groups. Students extend their knowledge to learn about DNA fingerprinting and recognizing DNA alterations that may result in genetic disorders.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.