Through a five-lesson series that includes numerous hands-on activities, students are introduced …
Through a five-lesson series that includes numerous hands-on activities, students are introduced to the importance and pervasiveness of bridges for connecting people to resources, places and other people, with references to many historical and current-day examples. In learning about bridge types arch, beam, truss and suspension students explore the effect of tensile and compressive forces. Students investigate the calculations that go into designing bridges; they learn about loads and cross-sectional areas by designing and testing the strength of model piers. Geology and soils are explored as they discover the importance of foundations, bearing pressure and settlement considerations in the creation of dependable bridges and structures. Students learn about brittle and ductile material properties. Students also learn about the many cost factors that comprise the economic considerations of bridge building. Bridges are unique challenges that take advantage of the creative nature of engineering.
Students are presented with a brief history of bridges as they learn …
Students are presented with a brief history of bridges as they learn about the three main bridge types: beam, arch and suspension. They are introduced to two natural forces tension and compression common to all bridges and structures. Throughout history, and today, bridges are important for connecting people to resources, places and other people. Students become more aware of the variety and value of bridges around us in our everyday lives.
Students act as engineers to learn about the strengths of various epoxy-amine …
Students act as engineers to learn about the strengths of various epoxy-amine mixtures and observe the unique characteristics of different mixtures of epoxies and hardeners. Student groups make and optimize thermosets by combining two chemicals in exacting ratios to fabricate the strongest and/or most flexible thermoset possible.
Students are introduced to the concept and steps of the engineering design …
Students are introduced to the concept and steps of the engineering design process and taught how to apply it. Students first receive some background information about biomedical engineering (aka bioengineering). Then they learn about material selection and material properties by using a provided guide. In small groups, students learn of their design challenge (improve a cast for a broken arm), brainstorm solutions, are given materials and create prototypes. To finish, teams communicate their design solutions through class poster presentations.
Haz un mini invernadero para cultivar microvegetales. Actividad de Bolsa de STEM …
Haz un mini invernadero para cultivar microvegetales. Actividad de Bolsa de STEM Semanal. Agentes de Colorado Americorp en los condados de Araphahoe, Denver, Garfield, Larimer y Weld. Trabajo apoyado por la Corporación para el Servicio Nacional y Comunitario bajo el número de subvención 18AFHCO0010008 de Americorps. Las opiniones o puntos de vista expresados en esta lección pertenecen a los autores y no representan necesariamente la posición oficial o una posición respaldada por la Corporación o el programa Americorps.
Create a device to blow bubble snakes. Activity from Weekly STEM in …
Create a device to blow bubble snakes. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
Students work in groups to create soap bubbles on a smooth surface, …
Students work in groups to create soap bubbles on a smooth surface, recording their observations from which they formulate theories to explain what they see (color swirls on the bubble surfaces caused by refraction). Then they apply this theory to thin films in general, including porous films used in biosensors, listing factors that could change the color(s) that become visible to the naked eye, and learn how those factors can be manipulated to give information on gene detection. Finally (by experimentation or video), students see what happens when water is dropped onto the surface of a Bragg mirror.
Students learn a simple technique for quantifying the amount of photosynthesis that …
Students learn a simple technique for quantifying the amount of photosynthesis that occurs in a given period of time, using a common water plant (Elodea). They can use this technique to compare the amounts of photosynthesis that occur under conditions of low and high light levels. Before they begin the experiment, however, students must come up with a well-worded hypothesis to be tested. After running the experiment, students pool their data to get a large sample size, determine the measures of central tendency of the class data, and then graph and interpret the results.
"Build It Yourself: Satellite!" is an online Flash game hosted on the …
"Build It Yourself: Satellite!" is an online Flash game hosted on the James Webb Space Telescope website. The goal of the game is to explain the decision-making process of satellite design. The user can choose to build a "small," "medium," or "large" astronomy satellite. The user then selects science goals, wavelength, instruments, and optics. The satellite is then launched on the appropriate rocket (shown via an animation). Finally, the user is shown what their satellite might look like, as well as what kind of data it might collect, via examples from similar real-life satellites. Satellites range from small X-ray missions without optics (like the Rossi X-ray Timing Explorer) to large missions with segmented mirrors (like the James Webb Space Telescope).
Students wire up their own digital trumpets using a MaKey MaKey. They …
Students wire up their own digital trumpets using a MaKey MaKey. They learn the basics of wiring a breadboard and use the digital trumpets to count in the binary number system. Teams are challenged to play songs using the binary system and their trumpets, and then present them in a class concert.
Students design and construct devices to trap insects that are present in …
Students design and construct devices to trap insects that are present in the area around the school. The objective is to ask the right design questions and conduct the right tests to determine if the traps work .
Student teams creatively construct mobiles using hangers and assorted materials and objects …
Student teams creatively construct mobiles using hangers and assorted materials and objects while exploring the principles of balance and center of mass. They build complex, free-hanging structures by balancing pieces with different lengths, weights, shapes and sizes.
Whether you want to light up a front step or a bathroom, …
Whether you want to light up a front step or a bathroom, it helps to have a light come on automatically when darkness falls. For this maker challenge, students create their own night-lights using Arduino microcontrollers, photocells and (supplied) code to sense light levels and turn on/off LEDs as they specify. As they build, test, and control these night-lights, they learn about voltage divider circuits and then experience the fundamental power of microcontrollers—controlling outputs (LEDs) based on sensor (photocell) input readings and if/then/else commands. Then they are challenged to personalize (and complicate) their night-lights—such as by using delays to change the LED blinking rate to reflect the amount of ambient light, or use many LEDs and several if/else statements with ranges to create a light meter. The possibilities are unlimited!
How can we design buildings to withstand an earthquake? This activity uses …
How can we design buildings to withstand an earthquake? This activity uses simple materials and gives learners a chance to experiment with structures that can withstand an earthquake. Two optional activities explore building damage by subjecting models to ground vibration on a small shake table.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students construct bird nests and birdhouses. They research birds of their choosing …
Students construct bird nests and birdhouses. They research birds of their choosing and then design houses that meet the birds' specific needs. It works well to conduct this activity in conjunction with a grades 9-12 woodshop class by partnering the older students with the younger students (but it is not required to do this in order to conduct the activity).
Survey potential bridge sites, research bridge design, and select the right bridge …
Survey potential bridge sites, research bridge design, and select the right bridge for the right location in this interactive activity from the NOVA Web site. ***Access to Teacher's Domain content now requires free login to PBS Learning Media.
In this hands-on activity, students explore the electrical force that takes place …
In this hands-on activity, students explore the electrical force that takes place between two objects. Each student builds an electroscope and uses the device to draw conclusions about objects' charge intensity. Students also determine what factors influence electric force.
MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and …
MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and test of a laptop-based radar sensor capable of measuring Doppler, range, and forming synthetic aperture radar (SAR) images. You do not have to be a radar engineer but it helps if you are interested in any of the following; electronics, amateur radio, physics, or electromagnetics.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.