Students use the modeling program STELLA to see what combinations of runoff …
Students use the modeling program STELLA to see what combinations of runoff and evaporation might have lead to Pleistocene lake level oscillations in California's Owens River system.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Stratified lakes exhibit vertical gradients in organisms, nutrients, and oxygen, which have …
Stratified lakes exhibit vertical gradients in organisms, nutrients, and oxygen, which have important implications for ecosystem structure and functioning. Mixing disrupts these gradients by redistributing these materials throughout the water column. Consequently, it is critical to understand the drivers of lake mixing and thermal stratification, especially because of the sensitivity of lake thermal conditions to altered climate. In this module, students will explore spatial and temporal patterns of lake mixing using high-frequency temperature data from lakes around the world. They will also explore how increases in air temperature affect thermal stratification by interpreting output from a lake model. Project EDDIE modules are designed with an A-B-C structure to make them flexible and adaptable to a range of student levels and course structures.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Working collaboratively, groups of students [3-4]develop hypotheses addressing the paleotopography of a …
Working collaboratively, groups of students [3-4]develop hypotheses addressing the paleotopography of a Miocene river channel [Table Mountain Latite] and processes that have resulted in its current topographic expression. Students use observations/data gained from topographic maps [Sonora, Keystone, Melones Dam and Knight's Ferry 7.5 minute quadrangles], San Francisco-San Jose Regional Geological Map, aerial photos, and Google Earth [120 39 01W; 37 48 15N to 120 26 17W; 37 57 36N]. Using PowerPoint, students present and defend their hypotheses and plans for further research during the final week of the semester. Designed for a geomorphology course
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students create a STELLA model of two marine terrace platforms separated in …
Students create a STELLA model of two marine terrace platforms separated in elevation by a cliff, using the hillslope flux equation to simulate the change in the cliff face over time as diffusive processes tear it down.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this assignment students model different scenarios of landscape evolution using an …
In this assignment students model different scenarios of landscape evolution using an on-line landscape evolution model. The assignment takes them through several situations involving changes in commonly modeled landscape variables like overland flow, faulting and uplift, erosivity, and drainage incision. At the end I have students devise a situation (of variables) that tests a hypothesis or the sensitivity of the model to changes in a variable. Designed for a geomorphology course Uses online and/or real-time data
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The first lab for an online introductory soils course for non-majors, this …
The first lab for an online introductory soils course for non-majors, this lab introduces students to landscapes and spatial patterns using Google Earth. In addition to learning to navigate in the imagery software, students re-learn or learn simple landscape parameter calculations like slope and area.
soils, landscape, aerial imagery, online
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit composed of 3 exercises designed to expose students to the physical …
Unit composed of 3 exercises designed to expose students to the physical processes that lead to landslides and how scientists model these processes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a basic introductory online exercises that introduces students to landslides. …
This is a basic introductory online exercises that introduces students to landslides. Students complete a background reading about landslides in general and answer a series of questions. Students then complete a background reading about the numerous debris flows that occurred near Boulder, Colorado in 2013. Students determine answers to questions from the text as well as interpreting graphs and maps.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a wrap-up exercise reviewing the properties of the most important …
This is a wrap-up exercise reviewing the properties of the most important igneous minerals in thin section.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Provenance: Zebra Canyon, Utah. Photo by Diane Greer; used with permission. Reuse: …
Provenance: Zebra Canyon, Utah. Photo by Diane Greer; used with permission. Reuse: If you wish to use this item outside this site in ways that exceed fair use (see http://fairuse.stanford.edu/) you must seek permission from its creator. Formative assessment questions using a classroom response system ("clickers") can be used to reveal students' spatial understanding. Students are shown this diagram and instructed to click in the box where they expect to find the same layer as the one labeled with a dot. Click on the image to see a larger version.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This lecture/activity allows students to "play with" a toy Slinky in order …
This lecture/activity allows students to "play with" a toy Slinky in order to recognize the implications of an elastic rheology to deformation at shallow crustal levels. Building on already-covered concepts of elasticity and friction, this module adds seismic first motions and earthquake locations to the students conceptual tool bag. As such, this module can be used to segue into other areas of geophyics that are of importance in structural geology (e.g., active tectonics, hazards).
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity provides young students with a relevant model (a layer cake) …
This activity provides young students with a relevant model (a layer cake) to help them understand concepts about sedimentary rock layers (such as the Law of Superposition), correlation of the rock record with geologic time and relative ages of rocks and fossils.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this jigsaw activity, students of intermediate-level French will divide into five …
In this jigsaw activity, students of intermediate-level French will divide into five groups to become experts on each of the five biodiversity questions featured on the Curiosphere website. They will proceed to explain their assigned aspect of the issue to a small group of students.
This Java-based NetLogo model allows students to investigate the chemical and energy …
This Java-based NetLogo model allows students to investigate the chemical and energy inputs and outputs of photosynthesis through an interactive simulation. The simulation is a visual, conceptual model of photosynthesis and does not generate quantitative data. The central concept in the model is the role of chlorophyll in capturing light energy, and this concept is presented without delving into the biochemical details of the photosynthetic reactions. This allows students to focus on the core idea that photosynthesis transforms light energy into chemical energy. Along with exploring the basic process of photosynthesis, students can investigate the effects of light intensity, the day-night cycle (assuming the most common C3 photosynthetic pathway), CO2 concentration, and water availability on the rate of sugar production during photosynthesis. The model highlights the cycling within the chloroplasts between excited and unexcited states as energy is captured and released by chlorophyll. The lesson is written as an introductory learning experience, beginning with the question: What is needed for photosynthesis in a leaf, and what is produced? This resource is best suited as one in a series of learning experiences that either reinforce or extend the concepts addressed here. The model is embedded within an electronic form that provides instructions and guiding questions. Teachers and students should note that the electronic form does not save user data. An important limitation is that the model relies heavily on students visual perception, and this may pose a barrier for some students.
This activity is a classroom introduction to bird migration. Students will acquire …
This activity is a classroom introduction to bird migration. Students will acquire new vocabulary, sharpen their map skills, and discover the scientific reasons some birds migrate.
This exercise set explores marine sediments using core photos and authentic datasets …
This exercise set explores marine sediments using core photos and authentic datasets in an inquiry-based approach. Students' prior knowledge of sea floor sediments is explored in Part 1. In Parts 2-3 students observe and describe the physical characteristics of sediment cores and determine the composition using smear slide data and a decision tree. In Part 4 students develop a map showing the distribution of the primary marine sediment types of the Pacific and North Atlantic Oceans and develop hypotheses to explain the distribution of the sediment types shown on their map.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In Part 1 of this activity, students are provided with a blank …
In Part 1 of this activity, students are provided with a blank topographic profile and an associated tectonic plate boundary map. Students are asked to draw a schematic cross-section on the profile down to the asthenosphere including tectonic plates (with relative thicknesses of crust etc. appropriately illustrated), arrows indicating directions of plate movement, tectonic features (mid-ocean ridges, trenches and volcanic arcs) and symbols indicating where melting is occurring at depth. In Part 2, students are asked to provide geological and geophysical lines of evidence to support their placement of convergent and divergent boundaries, respectively. A bonus question asks students to predict what would happen if spreading along the Atlantic mid-ocean ridge were to stop. Students are referred to appropriate sections of the textbook to guide them in completing all the parts of this activity. Students are also provided with a checklist of required elements for both parts of the assignment.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this activity, students are asked to consider three different rocks: granite, …
In this activity, students are asked to consider three different rocks: granite, shale and schist. Can these rocks become one of the others through geologic processes? Students are asked to describe the relationships between the rock types, the geologic processes involved and the geologic evidence for these relationships. Diagrams to help support their answers are suggested but not required.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Learning Assessment #3 is carried out over two class periods. Parts 1 …
Learning Assessment #3 is carried out over two class periods. Parts 1 and 2 are completed in the first period and part 3 in the second. The two parts are graded separately and have separate feedback activities.
Part 1 of this activity is on igneous rocks and processes. Students are provided with a cross-section and asked to describe the igneous processes that are occuring at 4 different locations marked on the cross-section. They must also describe the name, type (intrusive vs. extrusive) and chemistry (felsic vs. mafic) of igneous rock that would be forming at each location. A detailed geologic map is also provided.Part 2 of the activity is on sedimentary rocks and processes. Students must indicate on the same cross-section where each of the 3 major sedimentary processes is predominant (weathering/erosion, transport, deposition/lithification). For bonus marks, in the areas of deposition/lithification, students can indicate the type of sedimentary rock that would form (sandstone, shale or limestone).Part 3 of the activity asks students to interpret the geologic history of the Diasen Volcano, based the provided detailed geologic map (from Tamura et al. (2003); used with permission from the publisher). Students must describe the volcanic activity that would have been occurring and sketch a small schematic cross-section for four specified time periods.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Given a schematic cross-section and some background information about numerical ages, Part …
Given a schematic cross-section and some background information about numerical ages, Part 1 of this activity asks students to give the relative time sequence of 14 geological events. In Part 2, students must provide numerical age brackets for a number of geologic events and/or rock units. In Part 3, students are asked to explain their reasoning for their age bracket assignments in part 2, including the principles of relative age they employed. Students are provided with a copy of the geologic time scale (2009, Geological Society of America) to assist them in completing this activity.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.