Updating search results...

Search Resources

1374 Results

View
Selected filters:
  • Environmental Studies
Unit 2: Soil Characteristics and Their Relationship to Land Use Practices
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In a hands-on exploration, students will learn to describe and quantify the porosity and permeability of soil models representative of both agricultural and natural environments. Students will use this information to relate the effects of various agricultural methods on soil porosity and permeability in an exercise that requires modeling the role of a soil assessment expert. Instructors are provided with directions for collecting or assembling simple soil models.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Module
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Hannah Scherer
Martha Murphy
Sarah Fortner
Date Added:
06/17/2020
Unit 2: Systems Thinking and the Wicked Problem of Global Food Security
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Armed with an overview of the complexity of issues associated with global food security, this unit begins by contextualizing food security as an example of a wicked problem. Wicked problems are problems that are unsolvable in the traditional sense, and have complex multiscalar causal factors that contribute to the creation of new issues as old ones are addressed. Both global food security and climate change are examples of wicked problems. This unit presents systems thinking as a way to identify complex problems and explore solutions. Using a flipped classroom model, students complete a self study tutorial that presents system concepts in the context of Earth system science. The slide stack includes two guided activities related to the carbon cycle and soils. A short reading, "Why Systems Thinking?" and a video clip is included in the tutorial. Authentic assessment of the homework activity is an Earth system diagram connected to one of the issues of global food security from Unit 1 that they will bring to class. After a short class discussion that introduces concepts of sustainability and ecosystem services as related to food production, students are broken into groups and are asked to create their own systems diagram of the global food system, using the organizational systems concepts they examined as homework and the introduction activities of Unit 1. After completing the diagrams, students examine a food system diagram example, and identify the components of the system using standardized systems language. Students can photograph their diagrams or make quick sketches so they have a working copy to include with their notes.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Environmental Studies
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Amy Potter
Rebecca Boger
Russanne Low
Date Added:
09/19/2022
Unit 2: The Carbon Cycle
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will explore the different aspects of the carbon cycle on Earth. This includes the original source of all the carbon on our planet, the near ubiquity of carbon, the six principle reservoirs of carbon in the Earth system, and the movement (flux) of carbon between reservoirs. Students will approach the chemical history of carbon by personifying the "journey" of specific carbon atoms throughout geologic time.
The unit emphasizes the grand challenges of energy resources and climate change by grounding these issues in a solid understanding of carbon from a systems thinking perspective. The point here is for students to gain a more robust appreciation for the movement of carbon between atmosphere and geosphere, between hydrosphere and biosphere. The unit provides dynamic understanding of how perturbations to one sphere or changes in the amount of carbon in a given reservoir can have implications throughout the Earth system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Callan Bentley
Date Added:
09/29/2022
Unit 2: The Hydrologic Cycle and Freshwater Resources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will be introduced to the concept of a natural cycle. They are first asked to identify the different components of the hydrologic cycle. Students will be able to recognize the delicate balance between the individual elements of a large and complex system. Students will also be able to identify the interactions among parts of a natural system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Hydrology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/01/2022
Unit 2: The Water Cycle and Freshwater Resources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students are introduced to the concept of a natural cycle. They are first asked to identify the different components of the hydrologic cycle in Spanish. Students will be able to recognize the delicate balance between the individual elements of a large and complex system. Students will also be able to identify the interactions among parts of a natural system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/20/2022
Unit 2. Urban Hydrology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 2 engages students in topics related to the water cycle, both from natural and urban system perspectives. Students are assigned approximately 30 minutes of reading (short article) and are required to watch a 15-minute video before class to gain a basic understanding of the natural and urban water cycles, their components, and the impact of urbanization on runoff. Through short lectures, discussion questions, solution to example problems, and a group activity, students gain comprehension of the water cycle components, their spatial and temporal variability, water budget calculation, and the impacts of urbanization on surface water.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Engineering
Environmental Studies
Geology
Hydrology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/11/2022
Unit 2: Water Footprints
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 2 opens a window into water accounting and reveals intensive water use that few people think about. How much water goes into common commodities? Have you considered how much water it takes to support our modern American lifestyle and agricultural trade? Water that is embedded in products and services is called virtual water. Looking at the world through the lens of virtual water provides a watery focus to thorny discussions about water such as: the pros and cons of globalization and long distance trade; self sufficiency vs. reliance on other nations; ecosystem impacts of exports; and the impacts of relatively cheap imports on indigenous farming. Unit 2 also introduces the concept of a water footprint. A water footprint represents a calculation of the volume of water needed for the production of goods and services consumed by an individual or country. In this unit students will calculate their individual footprints and analyze how the water footprints of countries vary dramatically in terms of gross volumes and their components. As a result of these activities, students will learn of vast disparities in water access and application. They will also be challenged to consider mechanisms or policies that could foster greater equity in water footprints.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Agriculture and Natural Resources
Business and Communication
Chemistry
Earth and Space Science
Economics
Environmental Studies
Geology
Hydrology
Management
Mathematics
Measurement and Data
Physical Science
Political Science
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Robert Turner
Date Added:
05/04/2021
Unit 3.1 - Geology and Geomorphology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The basic concepts of geology will be considered to address the widely ranging textures and compositions of rocks and sediments formed in a wide range of environments. These variations in turn can affect soil formation and many related Critical Zone processes and architectures.
This unit requires substantial reading to cover basic concepts of geology: the rock cycle, plate tectonics, geologic time, erosion, weathering, and deposition, so that students have a firm grasp on how geology relates to and controls CZ processes. This background knowledge is accessed through a review of web sites and a scientific papers. An in-class activity uses the U.S. Geological Survey's National Geologic Map Database to identify resources for understanding and classifying the geology of a region.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Environmental Studies
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Tim White
Date Added:
10/14/2021
Unit 3.1: Land-Use Change and Stakeholders
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The example of a proposed land-use change that was used in Unit 2.3 is built upon here. The activities in this unit are meant to broaden the discussion beyond calculating quantitative run-off changes. Now we will also bring in consideration of a broader range of ecosystem services, as well as other ways in which a landscape can be valued, some of which may not be easily measured or even conceptualized as "services." Classroom time is devoted to the instructor and students exploring both (a) the stakeholders who have an interest in a particular place and (b) the various interests/uses those stakeholders may have for that place. By the end of the activity, the class should have identified several major stakeholder groups and several distinct ecosystem services. Students, organized into groups representing particular stakeholders, will then be tasked to prepare, for Unit 3.2, a group presentation, to be discussed on class on the last day of the module, that utilizes those ecosystem services as much as possible.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Earth and Space Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
08/27/2020
Unit 3.2: Presentation and Reflection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, the student groups organized at the end of Unit 3.1 will prepare presentations representing different stakeholder positions. This artifact -- Part I of the Module Summative Assessment (Microsoft Word 2007 (.docx) 25kB Sep4 16) -- can be part of a presentation to the instructor, to a panel of faculty/students, or to a "board" representing some decision-making unit (Community Council, University Board of Trustees, City/County Planning Commission). At the conclusion of this unit, students will be prompted to reflect, individually, on an ecosystem services approach to natural resources management -- Part II of the Module Summative Assessment (Microsoft Word 2007 (.docx) 23kB Sep4 16) .

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Communication
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
03/01/2022
Unit 3: Climate Change and Food Security
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit applies a flipped classroom model. Students complete a self-study tutorial prior to attending class. Students are then asked work independently or in pairs to generate a time-aware climate change Web map application using ArcGIS Online. Returning to the theme of cocoa production introduced in Unit 1, students identify climatic conditions conducive for cacao production around the world, especially West Africa where the majority of cacao is grown. Students then use a web application in ArcGIS Online to create a time aware map showing biomes in the KÃppen Climate Classification System and determine how projected climate changes will impact the suitable production regions for cacao in West Africa. Using a jigsaw model, students collect into groups of 4, with a representative from each of the IPCC scenarios, and they compare the the impact of the 4 scenarios in specified cocoa production regions. At the end of the class they will be assigned to one of three regional areas for group work in Units 4-6.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Amy Potter
Rebecca Boger
Russanne Low
Date Added:
12/02/2021
Unit 3: Codorus Creek case study: Measuring and interpreting seismic refraction data
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit presents an applied Case Study example and the associated concepts related to designing a seismic survey and analyzing the data. Parts of the instrument are discussed and practical experience simulating travel time arrivals on a travel time-offset plot are presented. A real dataset from the Case Study site at Codorus Creek, York, PA is presented and analysis strategies are discussed.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Environmental Studies
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Case Study
Data Set
Lesson Plan
Reading
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/03/2022
Unit 3: Crops and Irrigation Patterns in the United States
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit is designed to allow students to quantitatively assess how much water is used for irrigating crops and how this varies across the United States. This unit also has students link water use to the economic value of the crops that are produced--spanning the scientific and economic disciplines. The concepts that students learn here will connect back to the Water Footprint concept that was introduced in Unit 2, as students consider the accuracy of water calculators.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture
Agriculture and Natural Resources
Biology
Earth and Space Science
Economics
Environmental Studies
Geology
Hydrology
Life Science
Mathematics
Measurement and Data
Social Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Chris Sinton
Date Added:
05/04/2021
Unit 3: Culmination of Module in Town Hall Meeting
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Over the course of one week, students will apply and evaluate concepts in the context of their local community, culminating in the formulation and evaluation of Hazard Mitigation Plan recommendations presented in stakeholder position papers. These position papers, which will also serve as the summative assessment of the Major Storms and Community Resilience Module, will be presented and assessed during a Town Hall Meeting. In this role-playing activity, students apply and evaluate concepts in the context of assigned stakeholder positions from their local community. Over the course of the week, students formulate and evaluate Hazard Mitigation Plan recommendations for major storms, and then present those recommendations in a town hall-style meeting. These assignments demonstrate students' ability to develop strategies and recommendations to mitigate local community vulnerabilities to storms with specific emphasis on different sectors and/or stakeholders in that community. Instructors will assess student achievement of the learning goals through a formal oral presentation and a team policy position paper. As such, the culmination of Unit 3 in the Town Hall Meeting serves as the summative assessment for the Major Storms module.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Communication
Earth and Space Science
English Language Arts
Environmental Studies
Geology
Health, Medicine and Nursing
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Lisa Doner
Lorraine Motola
Patricia Stapleton
Date Added:
12/01/2021
Unit 3: Dynamic Integrated Climate Economy (DICE) Modeling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After an opening discussion of systems thinking and models, student use webDICE , an online Dynamic Integrated Climate Economy model developed by Center for Robust Decision Making on Climate and Energy Policy at the University of Chicago. Students will manipulate input parameters and interpret output in small groups in-class and individually out of class to complete the major mid-module assignment. The goal is to develop their understanding of the sources of uncertainty around future predictions of climate change and its impacts. Students are also introduced to the concept of Social Cost of Carbon (SCC) which is central to subsequent units in this module.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Political Science
Social Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Gautam Sethi
Robyn Smyth
Sandra Penny
Date Added:
09/18/2022
Unit 3: Field Geophysical Measurements
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Near surface geophysical measurements are performed by moving sensors across the Earth's surface. Active geophysical sensors transmit a signal into the Earth and record a returned signal that contains information on the physical and chemical properties of the Earth (see Unit 2). This unit introduces the student to the basics of geophysical data acquisition using two techniques that record variations in the electrical conductivity (see Unit 2) of the Earth: [1] electrical imaging (EI), and [2] electromagnetic (EM) conductivity mapping.











Basic concept of electrical imaging measurements

Provenance: Lee Slater, Rutgers University-Newark
Reuse: This item is in the public domain and maybe reused freely without restriction.
Electrical imaging is a galvanic geophysical approach whereby electrical contact with the Earth is made directly via electrodes (typically metal stakes) that are inserted into the ground. Electromagnetic conductivity mapping is a non-contact approach whereby the physics of EM induction is used to sense changes in electrical conductivity. The advantages and disadvantages of using galvanic (EI) and non-contact (EM) techniques for measuring electrical conductivity are described. Ohm's Law is introduced and students investigate how electrical resistance measurements are related to the electrical conductivity of soils. Field implementation of both EI and EM techniques is demonstrated using surveys performed in Harrier Meadow as an example. Students investigate how variations in survey configuration parameters (e.g. electrode configuration and electrode spacing in EI, frequency and coil spacing in EM) control investigation depth (how far into the ground the signals sense) and spatial resolution (what size objects can be detected). The concept of pre-modeling a geophysical survey (i.e. running some simulations of likely effectiveness of the methods before going to the field) to evaluate expected investigation depth and sensitivity is introduced. The Excel-based Scenario Evaluator for Electrical Resistivity (SEER) tool provided by the United States Geological Survey (USGS) is used to demonstrate some key concepts.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Chemistry
Earth and Space Science
Environmental Studies
Hydrology
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Data Set
Interactive
Reading
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/03/2022
Unit 3: Food Systems In Action
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the capstone, Unit 3, students are provided a real-world example of local community action to address the challenge of "healthy food access." The 2015 Leon County (Florida) Sustainable Communities Summit highlights the results of communities working together to promote environmental and food justice. By the end of Unit 3, instructors can deliver a call to action to empower students to be participatory citizens in their communities. The summative assessment will evaluate the students' ability to synthesize the module learning objectives and demonstrate the use of science practices.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Communication
Composition and Rhetoric
Comprehensive Health and Physical Education
English Language Arts
Environmental Studies
Health, Medicine and Nursing
Life Science
Nutrition
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Akin Akinyemi
Bakari McClendon
Cheryl Young
Cynthia Hewitt
John Warford
Richard D. Schulterbrandt Gragg III
Date Added:
08/23/2022
Unit 3: Geologic Record of Past Climate
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will be introduced to a few of the different methods used in paleoclimatology, including isotopic ratios as paleotemperature proxies. They will investigate the greenhouse gas connections of two ancient climate episodes, the cold "Snowball Earth" of the Neoproterozoic and the hot "Paleocene-Eocene Thermal Maximum" (PETM) of the Cenozoic.
The unit emphasizes the grand challenges of energy resources and climate change by grounding these issues in an understanding of ancient climate from a systems thinking perspective. Students will gain a more robust appreciation for the record of the movement of carbon between atmosphere, geosphere, hydrosphere, and biosphere over geologic time, and how various components of the Earth system respond to those perturbations. The unit practices geoscientific habits of mind, such as comparing modern processes to ancient analogues recorded by geologic processes, as well as the importance of converging lines of evidence, and recognition of Earth as a long-lived, dynamic, and complex system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Computer, Networking and Telecommunications Systems
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Information Science
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Callan Bentley
Date Added:
09/29/2022
Unit 3: Global Sea-Level Response to Ice Mass Loss: GRACE and InSAR data
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

What is the contribution of melting ice sheets compared to other sources of sea-level rise? How much is the sea level projected to increase during the twenty-first century? In this unit students will use Gravity Recovery and Climate Experiment (GRACE) ice-mass loss time series from Greenland and Antarctica to calculate sea-level rise due to the addition of freshwater inputs from melting ice sheets, and use Interferometric Synthetic Aperture Radar (InSAR) ice-velocity data to extrapolate which regions of the ice sheets are losing the greatest mass. Sea-level rise from melting ice sheets is then contrasted to the other dominant causes of sea-level rise, including thermal expansion, melting glaciers, and changes in land water storage. Lastly, students will extrapolate how much sea-level rise will occur by year 2100 based on recent observed rates of sea-level rise and compare these values to sea-level rise projections from the Intergovernmental Panel on Climate Change.

Show more about Online Teaching suggestions
Hide
Online-ready: The exercise is electronic and could be done individually or in small online groups. Lecture is best done synchronously due to the technical nature. Discussion would be better that way too.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Applied Science
Biology
Earth and Space Science
Environmental Science
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
09/26/2022
Unit 3: How Streams Change
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students use Google Earth to observe two river systems and characterize changes in gradient from the headwaters to the mouth, and relate changes in those gradients to different rock types. At one location, they observe historical changes in the river and infer how sediment erosion and deposition can alter a stream channel. Students also observe some ways in which humans attempt to prevent bank erosion.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Agriculture and Natural Resources
Biology
Environmental Studies
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
05/19/2022