Students will learn about NASA's Radiation Belt Storm Probes (RBSP), Earth's van …
Students will learn about NASA's Radiation Belt Storm Probes (RBSP), Earth's van Allen Radiation Belts, and space weather through reading a NASA press release and viewing a NASA eClips video segment. Then students will use simple linear functions to examine the scale of the radiation belts and the strength of Earth's magnetic field. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence.
We owe our lives to gravity. It holds the atmosphere to Earth …
We owe our lives to gravity. It holds the atmosphere to Earth and keeps us all from falling off into space. Not to mention that without gravity, the stars and planets—including Earth—wouldn't even exist! This Moveable Museum article, available as a nine-page printable PDF file, introduces the key concepts of gravity, orbits, weight, and weightlessness.
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
The sizes and distances of things in space are awe-inspiring, but hard …
The sizes and distances of things in space are awe-inspiring, but hard to fathom. Things that are unimaginably massive can look tiny to us from Earth, and things that appear very large to us may be among the smallest in the sky. Although students can learn names and features of objects in the night sky, scale is one of the biggest stumbling blocks they need to overcome to actually understand what they’re looking at and to understand astronomy in general. But students have lots of daily life experience with bigger things looking smaller because of relative distance (and visa versa). How Big & How Far takes this experience of observing relative sizes and distances here on Earth and challenges students to apply it to night sky objects.
In this Night Sky Activity, the group measures how many fists tall a volunteer is. Then, students scatter and measure again, this time with outstretched fists and with much smaller and varied measurements. Students discuss how the distance you are from an object can make it appear larger or smaller. This activity sets them up to apply this idea afterwards as they observe night sky objects and attempt to better understand the actual sizes of the objects they see.
Learners will use a variety of resources to conduct research to try …
Learners will use a variety of resources to conduct research to try to find answers to the questions they generated in previous activities. They continue to work the way scientists do by communicating what they learned from their research about Mars and present questions they still have and that others might want to think about researching in the future. This is activity 8 of 9 in Mars and Earth: Science Learning Activities for After School.
Students will study through investigation the effects of light pollution on night …
Students will study through investigation the effects of light pollution on night sky observation. They will share their results and suggest improvement within the community.
Create a human sundial to measure time using shadows. Activity from Weekly …
Create a human sundial to measure time using shadows. Activity from Weekly STEM in a Bag. Colorado Americorp agents in Araphahoe, Denver, Garfield, Larimer, and Weld Counties. Work supported by the Corporation for National and Community Service under Americorps grant number 18AFHCO0010008. Opinions or points of view expressed in this lesson are those of the authors and do not necessarily represent the official position of or a position that is endorsed by the Corporation or the Americorps program. This resource is also available in Spanish in the linked file.
This module discusses the hydrologic cycle and its impacts on the planet …
This module discusses the hydrologic cycle and its impacts on the planet Earth. Additionally, the module addresses connections between the hydrologic cycle, climate and the impacts humans have had on the cycle.
The students will learn about recent meteor strikes and the effects they …
The students will learn about recent meteor strikes and the effects they can have. They will then examine their significance in the history of the planet, and what they do to the surface of a planet when forming a crater. The students will then experimentally determine how the size and impact velocity of a meteorite determine the size of the crater.
This 24 minute planetarium show teaches about meteors, meteorites, asteroids, and comets. …
This 24 minute planetarium show teaches about meteors, meteorites, asteroids, and comets. The show was created for fulldome theaters, but is also available on DVD to be shown in flat version for TVs and computer monitors, and can be freely viewed online. It shows the effects of the Chixulub and Tungusta events, plus the Pallasite impact that resulted in the Brenham meteorite fall, and describes ways that asteroid hunters seek new objects in the solar system, and how ground penetrating radar is used to find meteorites that have survived to the Earth's surface. Narrated by astronaut Tom Jones, it also discusses ways that humans might try to deflect an asteroid or comet that is on a collision course with Earth. The show was created for informal science venues (digital planetariums); it is also useful as supplemental material for middle school science. Impact Earth is available for free if presented directly from the Space Update site (widescreen or fisheye views linked from YouTube). Otherwise, a DVD of the show can be purchased for $10.
Students use scaling from real-world data to obtain an idea of the …
Students use scaling from real-world data to obtain an idea of the immense size of Mars in relation to the Earth and the Moon, as well as the distances between them. Students calculate dimensions of the scaled versions of the planets, and then use balloons to represent their relative sizes and locations.
This is a set of three, one-page problems about the size and …
This is a set of three, one-page problems about the size and area of solar panels used to generate power. Learners will will use integer arithmetic to tally the number of hydrogen, oxygen and carbon atoms in a molecule and determine the number of methane atoms that can result. Options are presented so that students may learn about how NASA is using signs of methane gas to search for life on other planets, such as Mars, through a NASA press release or about how astrobiologists who are looking for life beyond Earth are using spectroscopy to identify methane plumes on Mars by viewing a NASA eClips video [7 min.]. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school.
This course includes Quantitative introduction to physics of the solar system, stars, …
This course includes Quantitative introduction to physics of the solar system, stars, interstellar medium, the Galaxy, and Universe, as determined from a variety of astronomical observations and models. Topics: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis. No prior knowledge of astronomy necessary. Not usable as a restricted elective by physics majors.
In this activity students use a simple model of the moon to …
In this activity students use a simple model of the moon to do an experiment to see how impact craters are formed. The lesson worksheets are differentiated and students are put into pre-determined teams by ability to conduct the experiment.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.