Updating search results...

Search Resources

1448 Results

View
Selected filters:
  • TeachEngineering
Sound Extenders
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to communications engineers as people who enable long-range communication. In the lesson demonstration, students discuss the tendency of sound to diminish with distance and model this phenomenon using a slinky. Finally, Alexander Graham Bell is introduced as the inventor of the telephone and a pioneer in communications engineering.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Sound Line
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the decibel reading of various noises and why high-level readings damage hearing. Sound types and decibel readings are written on sheets of paper, and students arrange the sounds from the lowest to highest decibel levels. If available, a decibel meter can be used to measure sounds by students.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Sound and Light
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with an understanding of sound and light waves through a "sunken treasure" theme a continuous storyline throughout the lessons. In the first five lessons, students learn about sound, and in the rest of the lessons, they explore light concepts. To begin, students are introduced to the concepts of longitudinal and transverse waves. Then they learn about wavelength and amplitude in transverse waves. In the third lesson, students learn about sound through the introduction of frequency and how it applies to musical sounds. Next, they learn all about echolocation what it is and how engineers use it to "see" things in the dark or deep underwater. The last of the five sound lessons introduces acoustics; students learn how different materials reflect and absorb sound.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Sound for Sight
Read the Fine Print
Educational Use
Rating
0.0 stars

Echolocation is the ability to orient by transmitting sound and receiving echoes from objects in the environment. As a result of a Marco-Polo type activity and subsequent lesson, students learn basic concepts of echolocation. They use these concepts to understand how dolphins use echolocation to locate prey, escape predators, navigate their environment, such as avoiding gillnets set by commercial fishing vessels. Students will also learn that dolphin sounds are vibrations created by vocal organs, and that sound is a type of wave or signal that carries energy and information especially in the dolphin's case. Students will learn that a dolphin's sense of hearing is highly enhanced and better than that of human hearing. Students will also be introduced to the concept of by-catch Students will learn what happens to animals caught through by-catch and why.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Sound from Left or Right?
Read the Fine Print
Educational Use
Rating
0.0 stars

Why do humans have two ears? How do the properties of sound help with directional hearing? Students learn about directional hearing and how our brains determine the direction of sounds by the difference in time between arrival of sound waves at our right and left ears. Student pairs use experimental set-ups that include the headset portions of stethoscopes to investigate directional hearing by testing each other's ability to identify the direction from which sounds originate.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Sounds All Around
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow the steps of the engineering design process to create their own ear trumpet devices (used before modern-day hearing aids), including testing them with a set of reproducible sounds. They learn to recognize different pitches, and see how engineers must test designs and materials to achieve the best amplifying properties.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Sounds Like Music
Read the Fine Print
Educational Use
Rating
0.0 stars

Music can loosely be defined as organized sound. The lesson objectives, understanding sound is a form of energy, understanding pitch, understanding sound traveling through a medium, and being able to separate music from sound, can provide a good knowledge base as to how sound, math, and music are related. Sound exists everywhere in the world; typically objects cause waves of pressure in the air which are perceived by people as sound. Among the sounds that exist in everyday life, a few of them produce a definite pitch. For example, blowing air over half full glass bottles, tapping a glass with a spoon, and tapping long steel rods against a hard surface all produce a definite pitch because a certain component of the object vibrates in a periodic fashion. The pitch produced by an object can be changed by the length or the volume of the portion that vibrates. For example, by gradually filling a bottle while blowing across the top, higher pitches can be generated. By organizing a few of these sounds with a clearer pitch, the sounds become closer to music. The very first musical instruments involved using various objects (e.g. bells) that have different pitches, which are played in sequence. The organization of the pitches is what transforms sounds into music. Since the first instruments, the ability to control pitch has greatly improved as illustrated by more modern instruments such as guitars, violins, pianos, and more. Music is comprised of organized sound, which is made of specific frequencies. This lesson will help define and elaborate on the connections between sound and music.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Space
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit begins by introducing students to the historical motivation for space exploration. They learn about the International Space Station, including current and futuristic ideas that engineers are designing to propel space research. Then they learn about the physical properties of the Moon, and think about what types of products engineers would need to design in order for humans to live on the Moon. Lastly, students learn some descriptive facts about asteroids, such as their sizes and how that relates to the potential danger of an asteroid colliding with the Earth.

Subject:
Applied Science
Engineering
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Space Shelter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given the following engineering challenge: "The invasion has taken place and we need to find a new home. To ensure your survival beyond Earth's occupation you must design a shelter that can be built on another planet." Then students research the characteristics of a planet of their choosing. They design shelter that enables them to survive on a new planet, and explain it in words to the rest of the class. This is a great activity to add to a unit on the solar system.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to the historical motivation for space exploration. They learn about the International Space Station as an example of recent space travel innovation and are introduced to new and futuristic ideas that space engineers are currently working on to propel space research far into the future!

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Spacecraft Design: Beat the Heat
Read the Fine Print
Educational Use
Rating
0.0 stars

To understand the challenges of satellite construction, student teams design and create model spacecraft to protect vital components from the harsh conditions found on Mercury and Venus. They use slices of butter in plastic eggs to represent the internal data collection components of the spacecraft. To discover the strengths and weaknesses of their designs, they test their unique thermal protection systems in a planet simulation test box that provides higher temperature and pressure conditions.

Subject:
Applied Science
Astronomy
Earth and Space Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Spaced Out
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the space environment. It covers the major differences between the environment on Earth and that of outer space and the engineering challenges that arise because of these discrepancies. In order to prepare students for the upcoming lessons on the human body, this lesson challenges them to think about how their bodies would change and adapt in the unique environment of space.

Subject:
Applied Science
Astronomy
Earth and Space Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Spaghetti Bridge
Read the Fine Print
Educational Use
Rating
0.0 stars

Civil engineers design structures such as buildings, dams, highways and bridges. Student teams explore the field of engineering by making bridges using spaghetti as their primary building material. Then they test their bridges to see how much weight they can carry before breaking.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
A Spectral Mystery
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the spectrographs from the "Building a Fancy Spectrograph" activity to gather data about light sources. Using their data, they make comparisons between different light sources and make conjectures about the composition of a mystery light source.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Spectroscopy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how using spectrographs helps people understand the composition of light sources. Using simple materials including holographic diffraction gratings, students create and customize their own spectrographs just like engineers. They gather data about different light sources, make comparisons between sources and theorize about their compositions. Before building spectrographs, students learn and apply several methods to identify and interpret patterns, specifically different ways of displaying visual spectra. They also use spectral data from the Cassini mission to Saturn and its moon, Titan, to determine the chemical composition of the planet's rings and its moon's atmosphere.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Spin Me a Story
Read the Fine Print
Educational Use
Rating
0.0 stars

In a spin-off to studying about angular momentum, students use basic methods of comparative mythology to consider why spinning and weaving are common motifs in creation of myths and folktales. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world — concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Splash, Pop, Fizz: Rube Goldberg Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

Refreshed with an understanding of the six simple machines; screw, wedge, pully, incline plane, wheel and axle, and lever, student groups receive materials and an allotted amount of time to act as mechanical engineers to design and create machines that can complete specified tasks. For the competition, they choose from pre-determined goal options such as: 1) dumping goldfish into a bowl, 2) popping a balloon, or 3) dropping mint candies into soda pop (creating a fizzy reaction). Students demonstrate their functioning contraptions to the class, earning points for using all six simple machines, successful transitions from one chain reaction to the next, and completion of the end goal.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Splish, Splash, I was Takin' a Bath!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will explore the causes of water pollution and its effects on the environment through the use of models and scientific investigation. In the accompanying activities, they will investigate filtration and aeration processes as they are used for removing pollutants from water. Lastly, they will learn about the role of engineers in water treatment systems.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Spool Racer Design & Competition
Read the Fine Print
Educational Use
Rating
0.0 stars

Students see how potential energy (stored energy) can be converted into kinetic energy (motion). Acting as if they were engineers designing vehicles, they use rubber bands, pencils and spools to explore how elastic potential energy from twisted rubber bands can roll the spools. They brainstorm, prototype, modify, test and redesign variations to the basic spool racer design in order to meet different design criteria, ultimately facing off in a race competition. These simple-to-make devices store potential energy in twisted rubber bands and then convert the potential energy to kinetic energy upon release.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Spring Away!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab demonstrates Hooke's Law with the use of springs and masses. Students attempt to determine the proportionality constant, or k-value, for a spring. They do this by calculating the change in length of the spring as different masses are added to it. The concept of a spring's elastic limit is also introduced, and the students test to makes sure the spring's elastic limit has not been reached during their lab tests. After compiling their data, they attempt to find an average value of the spring's k-value by measuring the slopes between each of their data points. Then they apply what they've learned about springs to how engineers might use that knowledge in the design of a toy that enables kids to jump 2-3 feet in the air.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014